深度学习实战电路板缺陷检测【数据集+YOLOv5模型+源码+PyQt5界面】

基于深度学习的电路板缺陷检测-

文章目录

  • 研究背景
      • [1. 电路板制造的重要性](#1. 电路板制造的重要性)
      • [2. 传统检测方法的局限性](#2. 传统检测方法的局限性)
      • [3. 深度学习技术的兴起](#3. 深度学习技术的兴起)
      • [4. 深度学习在缺陷检测中的应用](#4. 深度学习在缺陷检测中的应用)
      • [5. 研究进展](#5. 研究进展)
      • [6. 面临的挑战](#6. 面临的挑战)
      • [7. 结论](#7. 结论)
  • 代码下载链接
  • 一、效果演示
    • [1.1 图像演示](#1.1 图像演示)
    • [1.2 视频演示](#1.2 视频演示)
    • [1.3 摄像头演示](#1.3 摄像头演示)
  • 二、技术原理
    • [2.1 整体流程](#2.1 整体流程)
    • [2.2 电路板缺陷数据集介绍](#2.2 电路板缺陷数据集介绍)
    • [2.3 YOLOV5电路板缺陷检测原理](#2.3 YOLOV5电路板缺陷检测原理)
      • [2.3.1 概述](#2.3.1 概述)
      • [2.3.2 输入层](#2.3.2 输入层)
      • [2.3.3 Backbone层](#2.3.3 Backbone层)
      • [2.3.4 Backbone层](#2.3.4 Backbone层)
      • [2.3.5 Head层](#2.3.5 Head层)
    • [2.4 模型训练](#2.4 模型训练)
      • [2.4.1 Conda环境构建](#2.4.1 Conda环境构建)
      • [2.4.2 基础环境构建](#2.4.2 基础环境构建)
      • [2.4.3 安装YOLOv5环境](#2.4.3 安装YOLOv5环境)
      • [2.4.4 构建电路板缺陷检测模型](#2.4.4 构建电路板缺陷检测模型)
      • [2.4.5 电路板缺陷数据集标记与校验](#2.4.5 电路板缺陷数据集标记与校验)
      • [2.4.6 电路板缺陷检测模型训练](#2.4.6 电路板缺陷检测模型训练)
      • [2.4.7 电路板缺陷验证测试](#2.4.7 电路板缺陷验证测试)
  • 代码下载链接
  • 参考文献

研究背景

深度学习在电路板缺陷检测领域的应用是工业自动化和质量控制的重要方向。随着电子制造业的快速发展,电路板的复杂性和精细度不断提高,传统的人工检测方法已经难以满足高效率和高精度的要求。因此,利用深度学习技术进行自动化的电路板缺陷检测成为了研究的热点。以下是关于深度学习电路板缺陷检测研究背景的详细阐述:

1. 电路板制造的重要性

电路板(Printed Circuit Board, PCB)是现代电子设备中不可或缺的组成部分,它们承载着电子元件并确保这些元件之间的电气连接。电路板的质量直接影响到电子产品的性能和可靠性。因此,电路板的制造过程需要严格的质量控制。

2. 传统检测方法的局限性

传统的电路板缺陷检测主要依赖于人工视觉检查或简单的自动化设备。这些方法存在以下局限性:

  • 效率低下:人工检测速度慢,难以应对大规模生产的需求。
  • 主观性强:人工检测易受操作者疲劳、情绪等因素的影响,导致检测结果不稳定。
  • 精度有限:对于微小或隐蔽的缺陷,人工检测难以发现。

3. 深度学习技术的兴起

深度学习是机器学习的一个分支,它通过构建多层次的神经网络来学习数据的高层特征。近年来,深度学习在图像识别、语音处理等领域取得了显著的成果。特别是在图像识别领域,深度学习模型如卷积神经网络(CNN)已经证明了其在图像特征提取方面的强大能力。

4. 深度学习在缺陷检测中的应用

将深度学习应用于电路板缺陷检测,可以有效地解决传统方法的局限性:

  • 自动化程度高:深度学习模型可以自动从大量图像数据中学习缺陷特征,实现自动化检测。
  • 检测精度高:深度学习模型能够识别微小或复杂的缺陷,提高检测的准确性。
  • 适应性强:通过持续学习新的数据,深度学习模型可以适应不同的电路板类型和缺陷模式。

5. 研究进展

目前,深度学习在电路板缺陷检测领域的研究主要集中在以下几个方面:

  • 数据集的构建:收集和标注大量的电路板图像数据,为模型训练提供基础。
  • 模型的优化:研究和设计适合电路板缺陷检测的深度学习模型,如改进的卷积神经网络。
  • 检测算法的改进:开发高效的算法,提高缺陷检测的速度和准确性。
  • 系统集成:将深度学习模型集成到电路板生产线中,实现实时在线检测。

6. 面临的挑战

尽管深度学习在电路板缺陷检测中展现出巨大的潜力,但仍面临一些挑战:

  • 数据获取难度:高质量的标注数据获取成本高,且需要专业知识。
  • 模型泛化能力:模型在特定数据集上表现良好,但在不同环境或条件下的泛化能力有待提高。
  • 计算资源需求:深度学习模型训练和推理需要大量的计算资源,对硬件设备有较高要求。

7. 结论

深度学习技术为电路板缺陷检测提供了新的解决方案,通过自动化和高精度的检测,有助于提高电子制造业的生产效率和产品质量。随着技术的不断发展和优化,深度学习在电路板缺陷检测领域的应用前景广阔。


觉得不错的小伙伴,感谢点赞、关注加收藏哦!更多干货内容持续更新...

代码下载链接

关注博主的G Z H【小蜜蜂视觉】,回复【电路板缺陷检测】即可获取下载方式


若您想获得博文中涉及的实现完整全部程序文件(包括系统UI设计文件,电路板缺陷测试数据集、py文件,模型权重文件,调试说明等),代码获取与技术指导,具体见可参考博客与视频,已将所有涉及的文件同时打包到里面,软件安装调试有具体说明,我们有专业的调试技术人员,将远程协助客户调试,具体请看安装调试说明.txt ,完整文件截图如下:

一、效果演示

本文构建的电路板缺陷检测系统基于PyQt5构建,支持图像、视频、摄像头以及RTSP等数据源输入。

1.1 图像演示

1.2 视频演示

1.3 摄像头演示

二、技术原理

2.1 整体流程

深度学习电路板缺陷检测技术的目标是从输入图像中准确地定位手写的位置,通常是通过目标检测技术来实现。

  1. 数据准备: 首先,需要准备电路板缺陷数据集。

  2. 网络架构: 选择一个适合电路板缺陷定位任务的深度学习网络架构。一种常见的选择是基于卷积神经网络(CNN)的架构,例如Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)。这些网络可以同时预测边界框的位置和类别,适用于目标检测任务。

  3. 训练: 使用准备好的训练数据集对所选网络架构进行训练。训练过程涉及将输入图像传递给网络,然后通过反向传播优化网络的权重,使其能够准确地预测电路缺陷位置。训练数据中的每个样本都包括输入图像和相应的缺陷位置标注。

  4. 预测: 在训练完成后,将训练得到的网络应用于新的图像。通过将图像输入网络,网络将输出电路缺陷位置的预测结果,这通常是一个边界框或四个关键点的坐标。

  5. 后处理: 根据网络输出的预测结果,可以使用一些后处理技术来提高定位的准确性。例如,可以使用非极大值抑制(NMS)来抑制重叠的边界框,只保留最有可能的车牌位置。

  6. 评估和调优: 对预测结果进行评估,可以使用评价指标如IoU(Intersection over Union)来衡量预测框与真实标注框的重叠程度。根据评估结果,可以对网络架构、训练参数等进行调优,以提高定位的准确性和稳定性。

2.2 电路板缺陷数据集介绍

电路板缺陷数据集一共690张图象左右,包含六种缺陷,missing_hole【缺失孔】, mouse_bite【鼠咬】, open_circuit【开路】, short【短路】, spur【杂散】, spurious_copper【杂铜】,如下图所示

2.3 YOLOV5电路板缺陷检测原理

2.3.1 概述

YOLOv5算法是一种单阶段目标检测算法,其网络结构主要由输入端(Input)、主干网络Backbone)、特征融合模块(Neck )和预测层(Head)4个部分组成。如下图所示。

对不同尺寸的目标进行检测时,输入图片经过处理后变成大小为640×640的图片,再输入骨干网络处理得到20×20 、40×40、80×80 三种特征图,再将三种不同尺度的特征图进行融合,使得网络学习同时兼顾目标的顶层和底层特征。

2.3.2 输入层

为了提升模型的泛化能力,在YOLOv5 中增加了Mosaic数据增强方式,即从一个 batch 中随机选取 4 张图片,并将图片进行随机缩放、裁剪,再拼接成一个设定边长的训练样本,作为训练集图片送入神经网络。这样做可以在不改变原来的数据集数量的基础上获得更多数据特征进行训练,既能有效提高系统的鲁棒性,也能在一定程度上减少GPU 的损耗,也可以加快网络训练速度。马赛克数据增强原理如下图所示。

2.3.3 Backbone层

YOLOv5 中的主干网络 Backbone 主要作用是提取输入图像的目标特征,使用了Focus结构作为Backbone中的基准网络,网络结构模型为CSPDarknet53 ,并通过切片操作来获得得到二倍下采样图,可以有效增强主干网络特征提取能力。

1)Focus 结构

输入的图像先经过 Focus 模块,进行切片操作,即在图片中每隔像素值进行取值,得到四张互补的输入图像,再输入骨干网络进行处理,从而达到对系统提速的效果。Focus结构如下图所示。

2)CSP 结构

YOLOv5 中的 CSP 结构主要用于增强主干网络提取深层图的信息,常用的CSP 结构主要有两种,被用于 Backbone 主干网络的是CSP1 模块,被用于特征融合Neck结构的是CSP2 模块。CSP1 模块能有效减少网络计算量和保证网络模型整体的准确性,其结构共有两个分支,一个分支连接残差组件,另一分支在卷积后通过 Concat 方式和上一分支相连接。结构如下图所示。

CBL 模块主要由图像的卷积、批量标准化操作和 Leaky_Relu 激活函数组成,如下图所示。

残差结构 Resunit 主要用于防止当网络深度加深时网络性能退化,如下图所示。

SPP 模块主要用于把输入图像送入池化层中,获得不同的池化特征值,再将这些池化特征值和原图的特征值用Concat进行连接,使得在不影响网络的训练速率的前提下,显著分离图像特征值,如下图所示。

2.3.4 Backbone层

YOLOv5中的Neck 层主要用于将 Backbone 结构中提取到的目标特征进行融合,再输入 Head 层。在YOLOv5的Neck模块中采用FPN+PAN网络结构和CSP2 模块来增加特征融合能力。其中, 特征金字塔网络(FPN),主要用于采集图像中的高层信息,并将其传递给低层,路径聚合网络(PAN),则相反,将目标位置信息由低层传递给高层,从而有效提高目标识别的准确性,如下图所示。

2.3.5 Head层

YOLOv5 的 Head 层主要功能是对经过 Neck 结构特征融合后的目标进行类别的判断和预测。Head 层主要包含损失函数和非极大值抑制两部分,损失函数用于评价训练时预测值与真实值之间的误差程度。其中,YOLOv5 以 GIOU_Loss 做为损失函数,其数值越小,说明模型的预测效果越好。非极大值抑制处理主要用于对最后的目标检测框进行非极大值抑制处理,保留最优目标框,提高了目标识别的准确性。

2.4 模型训练

模型训练主要分为如下几步:

2.4.1 Conda环境构建

新人安装Anaconda环境可以参考博主写的文章Anaconda3与PyCharm安装配置保姆教程

2.4.2 基础环境构建

新人安装PyTorch GPU版本可以参考博主写的文章基于conda的PyTorch深度学习框架GPU安装教程

2.4.3 安装YOLOv5环境

python 复制代码
conda create -n yolov5 python=3.8
conda activate yolov5
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirement.txt

2.4.4 构建电路板缺陷检测模型

python 复制代码
# Parameters
nc: 6  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.4.5 电路板缺陷数据集标记与校验

数据集按照7:2:1的比例划分,即训练集70%,验证集20%,测试集10%,标注格式采用yolo格式组织

python 复制代码
pcbDefect
	images
		train
			image1.jpg
			image2.jpg
			...
		val
			image11.jpg
			image22.jpg
			...
		test
			image111.jpg
			image222.jpg
			...
	labels
		train
			image1.txt
			image2.txt
			...
		val
			image11.txt
			image22.txt
			...
		test
			image111.txt
			image222.txt
			...

2.4.6 电路板缺陷检测模型训练

python 复制代码
python train.py --data data/pcbDefect.yaml --weights weights/yolo5s.pt --epochs 200 --img 640 --batch 32
python 复制代码
               epoch,      train/box_loss,      train/obj_loss,      train/cls_loss,   metrics/precision,      metrics/recall,     metrics/mAP_0.5,metrics/mAP_0.5:0.95,        val/box_loss,        val/obj_loss,        val/cls_loss,               x/lr0,               x/lr1,               x/lr2
                   0,             0.12484,             0.02737,             0.05086,                   0,                   0,                   0,                   0,            0.099175,            0.022928,            0.041956,              0.0003,              0.0003,              0.0973
                   1,              0.1142,            0.023805,            0.047829,          1.8484e-05,           0.0019608,          9.3664e-06,          4.6832e-06,            0.094973,            0.022314,            0.040621,          0.00060698,          0.00060698,            0.094507
                   2,             0.12133,            0.023373,            0.048619,          2.3914e-05,           0.0039216,          1.2268e-05,          3.0787e-06,             0.09351,             0.02185,            0.039008,          0.00091089,          0.00091089,            0.091711
                   3,             0.10872,            0.022898,            0.045056,                   0,                   0,                   0,                   0,            0.090055,            0.023763,             0.03879,           0.0012117,           0.0012117,            0.088912
                   4,             0.10918,              0.0239,            0.043116,           8.742e-06,           0.0019608,          4.7785e-06,          9.5569e-07,            0.088986,            0.023305,             0.03792,           0.0015095,           0.0015095,             0.08611
                   5,             0.10875,            0.024434,            0.043995,          0.00019947,            0.010214,          0.00010997,          2.6007e-05,            0.088992,            0.022971,            0.037073,           0.0018042,           0.0018042,            0.083304
                   6,             0.11414,            0.025017,            0.043744,                   0,                   0,                   0,                   0,            0.085712,            0.025487,            0.036888,           0.0020958,           0.0020958,            0.080496
                   7,             0.10827,            0.026964,            0.042441,             0.16709,           0.0024155,          2.6152e-05,          2.6152e-06,            0.084743,            0.025547,            0.035558,           0.0023844,           0.0023844,            0.077684
                   8,             0.10007,            0.027432,            0.040806,          0.00018402,            0.024385,           0.0001051,          4.1652e-05,            0.083923,            0.025623,            0.034752,           0.0026699,           0.0026699,             0.07487
                   9,              0.1022,            0.027681,            0.038991,             0.83637,           0.0048309,            0.000838,          0.00016014,             0.08344,            0.025185,            0.033924,           0.0029523,           0.0029523,            0.072052
                  10,             0.10668,            0.028629,            0.041762,           0.0043043,             0.11947,           0.0028779,          0.00070002,            0.081718,            0.026008,             0.03363,           0.0032317,           0.0032317,            0.069232
                  11,            0.094817,            0.028187,            0.037223,            0.010421,             0.13669,           0.0064485,           0.0023622,            0.079839,            0.026461,             0.03251,            0.003508,            0.003508,            0.066408
                  12,             0.10223,            0.029149,             0.03979,             0.08995,             0.11447,            0.026334,           0.0071619,            0.077197,            0.026976,            0.031045,           0.0037812,           0.0037812,            0.063581
                  13,            0.096238,            0.030066,            0.033945,             0.29717,             0.12115,            0.046143,            0.011257,            0.073834,             0.02661,             0.03009,           0.0040514,           0.0040514,            0.060751
                  14,            0.093807,            0.029488,            0.033628,             0.29149,             0.20257,             0.09556,             0.02552,            0.064574,            0.026527,            0.028707,           0.0043184,           0.0043184,            0.057918
                  15,            0.086757,            0.029328,            0.036134,             0.34997,             0.20591,             0.12756,            0.032759,            0.058909,            0.025801,             0.02892,           0.0045825,           0.0045825,            0.055082
                  16,            0.076235,            0.028122,            0.033492,             0.26873,             0.16685,            0.082917,            0.023012,             0.06048,            0.023564,            0.028187,           0.0048434,           0.0048434,            0.052243
                  17,            0.081788,            0.027419,            0.036132,              0.1771,             0.27427,             0.13825,            0.038245,            0.054586,            0.023455,            0.026885,           0.0051013,           0.0051013,            0.049401
                  18,            0.072503,             0.02621,            0.035861,             0.19031,             0.26175,             0.13786,            0.039231,            0.055165,             0.02206,            0.026718,           0.0053561,           0.0053561,            0.046556
                  19,            0.075154,            0.025401,            0.035481,             0.13098,             0.29517,             0.15981,            0.051945,            0.053173,             0.02305,            0.026441,           0.0056078,           0.0056078,            0.043708
                  20,             0.07247,            0.027697,            0.034355,             0.16031,               0.387,             0.19065,            0.063287,            0.050783,            0.023427,              0.0259,           0.0058565,           0.0058565,            0.040856
                  21,            0.070079,            0.024609,             0.03242,              0.2172,             0.40022,             0.22486,            0.070513,            0.051542,            0.020548,             0.02562,           0.0061021,           0.0061021,            0.038002
                  22,            0.072638,            0.023778,            0.033797,             0.23871,             0.40299,             0.23364,            0.079628,            0.048709,            0.019411,            0.025403,           0.0063446,           0.0063446,            0.035145
                  23,            0.067763,            0.023429,            0.031075,             0.30583,             0.42377,             0.31444,              0.1101,            0.045775,            0.018809,            0.024514,           0.0065841,           0.0065841,            0.032284
                  24,            0.068432,             0.02275,            0.031787,             0.23464,             0.47114,             0.25414,            0.076288,            0.045868,            0.017216,            0.023834,           0.0068205,           0.0068205,             0.02942
                  25,             0.06421,            0.021766,            0.029952,             0.36794,             0.46555,             0.42251,             0.16531,            0.044276,            0.016465,            0.022828,           0.0070538,           0.0070538,            0.026554
                  26,            0.060759,             0.02159,            0.028128,             0.29827,             0.53119,             0.39159,             0.13732,             0.04389,            0.016635,            0.021993,           0.0072841,           0.0072841,            0.023684
                  27,             0.06263,            0.021824,            0.029637,             0.37995,             0.49254,             0.40589,             0.13539,            0.044346,            0.017079,            0.020667,           0.0075113,           0.0075113,            0.020811
                  28,            0.061617,            0.021408,            0.024676,             0.38632,             0.54125,             0.46086,             0.16602,            0.044787,            0.016174,            0.019635,           0.0077354,           0.0077354,            0.017935
                  29,            0.065169,            0.020749,            0.026807,             0.38223,             0.60098,             0.45897,             0.15665,            0.045328,            0.016849,                0.02,           0.0079564,           0.0079564,            0.015056
                  30,            0.063139,             0.02049,            0.024576,              0.4257,             0.46196,             0.40128,             0.14993,            0.044961,            0.019111,            0.018987,           0.0081744,           0.0081744,            0.012174
                  31,            0.067716,            0.020788,             0.02591,             0.39936,             0.57545,             0.44998,                0.16,            0.044199,            0.016384,            0.017622,           0.0083893,           0.0083893,           0.0092893
                  32,            0.056865,            0.019899,            0.023785,              0.4629,             0.68263,             0.54684,             0.17261,            0.044873,            0.015662,            0.015883,            0.008416,            0.008416,            0.008416
                  33,            0.058964,             0.01995,            0.021784,             0.55403,             0.58913,              0.5685,             0.22085,            0.040284,            0.015942,             0.01443,            0.008416,            0.008416,            0.008416
                  34,            0.058454,            0.019378,            0.020485,             0.42254,             0.70449,             0.54222,             0.21409,            0.046571,            0.014397,            0.013292,           0.0083665,           0.0083665,           0.0083665
                  35,            0.058928,             0.02042,            0.019211,             0.60793,             0.70669,             0.64054,             0.25293,            0.041433,            0.014017,            0.012946,            0.008317,            0.008317,            0.008317
                  36,            0.054344,            0.019364,            0.018559,             0.63038,             0.63844,             0.60525,               0.214,            0.040027,            0.014703,             0.01273,           0.0082675,           0.0082675,           0.0082675
                  37,            0.056027,            0.018725,            0.019346,             0.58863,             0.65128,             0.61601,              0.2186,             0.04146,            0.014097,            0.012551,            0.008218,            0.008218,            0.008218
                  38,            0.051582,            0.017833,            0.017648,             0.65324,             0.68514,             0.66436,             0.26664,            0.037995,            0.014601,            0.011902,           0.0081685,           0.0081685,           0.0081685
                  39,            0.056378,            0.019822,            0.019619,             0.64028,             0.69426,             0.64908,             0.26194,            0.038427,            0.015223,            0.012832,            0.008119,            0.008119,            0.008119
                  40,            0.055912,            0.019035,            0.019743,             0.56056,             0.66146,             0.61191,             0.24558,              0.0392,             0.01611,            0.012616,           0.0080695,           0.0080695,           0.0080695
                  41,            0.057096,            0.018863,            0.018639,             0.60676,             0.65111,             0.64875,             0.24476,            0.037914,            0.015474,            0.012516,             0.00802,             0.00802,             0.00802
                  42,            0.052602,            0.018758,            0.016409,             0.73267,             0.65367,             0.66801,             0.24529,            0.039337,            0.014857,            0.010857,           0.0079705,           0.0079705,           0.0079705
                  43,            0.052403,             0.01904,            0.016651,             0.66987,             0.65322,             0.65329,             0.23442,            0.038708,            0.014813,            0.010211,            0.007921,            0.007921,            0.007921
                  44,            0.054819,            0.018756,            0.016562,               0.726,             0.71208,             0.72272,             0.28136,            0.038059,            0.014965,            0.011355,           0.0078715,           0.0078715,           0.0078715
                  45,            0.051945,            0.018247,             0.01558,             0.65716,             0.74192,             0.71502,             0.29463,            0.036035,            0.014914,            0.010335,            0.007822,            0.007822,            0.007822
                  46,            0.048662,            0.018387,             0.01261,             0.75183,             0.74856,             0.78253,             0.32716,            0.035286,            0.013997,             0.00908,           0.0077725,           0.0077725,           0.0077725
                  47,            0.051778,            0.018055,            0.013956,             0.75034,             0.74415,             0.78651,             0.32863,            0.037475,            0.013481,           0.0087572,            0.007723,            0.007723,            0.007723
                  48,             0.04879,            0.017522,            0.014655,             0.84672,             0.77846,             0.83463,             0.36633,             0.03312,            0.013482,            0.008113,           0.0076735,           0.0076735,           0.0076735
                  49,            0.045367,            0.016369,            0.011432,             0.88172,             0.78395,              0.8345,             0.36982,            0.034699,              0.0136,           0.0077343,            0.007624,            0.007624,            0.007624
                  50,            0.049162,            0.017486,            0.013406,             0.87596,             0.78937,             0.85484,              0.3911,            0.033765,            0.013094,           0.0071882,           0.0075745,           0.0075745,           0.0075745
                  51,            0.048895,             0.01649,            0.010995,               0.818,             0.76106,             0.79677,             0.31772,            0.035831,            0.013744,           0.0072649,            0.007525,            0.007525,            0.007525
                  52,            0.048196,             0.01597,            0.012448,             0.91648,             0.79214,             0.87183,             0.39436,            0.033049,            0.012967,           0.0064913,           0.0074755,           0.0074755,           0.0074755
                  53,            0.049006,            0.016843,            0.012422,             0.89503,             0.82083,             0.85232,             0.35166,            0.034703,            0.013242,           0.0060425,            0.007426,            0.007426,            0.007426
                  54,            0.045039,            0.016665,            0.010964,             0.88004,             0.76269,             0.82095,             0.34482,            0.035443,             0.01379,           0.0058685,           0.0073765,           0.0073765,           0.0073765
                  55,            0.049921,            0.017242,             0.01021,              0.8134,             0.69093,             0.73544,             0.27637,            0.037711,             0.01636,           0.0078486,            0.007327,            0.007327,            0.007327
                  56,            0.045715,            0.016572,            0.010712,             0.89924,              0.7686,              0.8494,             0.34522,            0.033694,            0.014355,           0.0064229,           0.0072775,           0.0072775,           0.0072775
                  57,            0.045321,             0.01685,           0.0097301,             0.93359,             0.78541,             0.86524,             0.35157,             0.03404,            0.013498,           0.0055048,            0.007228,            0.007228,            0.007228
                  58,            0.045265,             0.01607,           0.0089117,             0.92405,             0.80675,             0.86445,             0.36384,            0.032952,            0.012936,           0.0052725,           0.0071785,           0.0071785,           0.0071785
                  59,            0.046811,            0.017249,           0.0079751,             0.88507,             0.77521,             0.85653,             0.35136,            0.034862,            0.013452,            0.005372,            0.007129,            0.007129,            0.007129
                  60,            0.044543,            0.016109,            0.010059,             0.92684,             0.82112,             0.89208,             0.39844,            0.031855,            0.013012,           0.0046403,           0.0070795,           0.0070795,           0.0070795
                  61,             0.04393,            0.016937,            0.010026,             0.96179,             0.79142,             0.88832,              0.3887,            0.032853,            0.013447,            0.004644,             0.00703,             0.00703,             0.00703
                  62,             0.04447,            0.017083,             0.00857,             0.91542,             0.81076,             0.85554,             0.37937,            0.033633,            0.012946,           0.0044348,           0.0069805,           0.0069805,           0.0069805
                  63,            0.048069,            0.015914,            0.010106,             0.88183,             0.83371,             0.88729,             0.38924,            0.035211,            0.012345,           0.0043419,            0.006931,            0.006931,            0.006931
                  64,            0.047465,            0.015861,            0.010033,             0.94491,             0.81236,             0.87716,              0.3876,            0.033621,            0.012739,           0.0042835,           0.0068815,           0.0068815,           0.0068815
                  65,            0.046503,            0.016447,           0.0096603,             0.93186,             0.82607,             0.86643,             0.39011,            0.031858,            0.013193,            0.005143,            0.006832,            0.006832,            0.006832
                  66,            0.043081,            0.016306,           0.0098997,             0.91899,             0.82768,             0.88598,             0.38536,             0.03219,            0.012865,           0.0050801,           0.0067825,           0.0067825,           0.0067825
                  67,            0.046527,            0.015942,            0.010459,             0.94605,             0.81018,             0.89336,             0.39331,            0.032565,            0.013048,           0.0044286,            0.006733,            0.006733,            0.006733
                  68,            0.044154,            0.015473,            0.008497,             0.92187,              0.8141,             0.87062,             0.39324,            0.032281,            0.013037,           0.0039939,           0.0066835,           0.0066835,           0.0066835
                  69,            0.044052,            0.016617,            0.010523,             0.92972,             0.82751,             0.86467,              0.3902,            0.033314,            0.013084,           0.0051996,            0.006634,            0.006634,            0.006634
                  70,            0.045459,            0.016656,           0.0086925,             0.88645,             0.80142,             0.84436,             0.33819,            0.036311,            0.013742,           0.0047912,           0.0065845,           0.0065845,           0.0065845
                  71,            0.044562,            0.016596,            0.010416,             0.90629,             0.83939,             0.88171,              0.3867,            0.033018,            0.013289,           0.0042312,            0.006535,            0.006535,            0.006535
                  72,            0.041348,            0.017017,           0.0083758,             0.95946,             0.81294,             0.90342,             0.40224,            0.031912,            0.012792,           0.0042021,           0.0064855,           0.0064855,           0.0064855
                  73,            0.044251,            0.016574,           0.0080459,             0.88369,              0.7731,             0.87218,             0.38941,            0.032398,            0.016928,           0.0039136,            0.006436,            0.006436,            0.006436
                  74,            0.041181,            0.016271,           0.0060709,             0.79849,             0.79458,               0.765,             0.31907,             0.03449,            0.036394,           0.0044259,           0.0063865,           0.0063865,           0.0063865
                  75,            0.042834,            0.015841,           0.0086537,             0.92066,             0.79164,             0.88469,              0.3953,            0.031921,            0.014896,           0.0036765,            0.006337,            0.006337,            0.006337
                  76,             0.04294,            0.015388,           0.0073545,             0.91545,             0.81423,             0.89903,             0.41682,            0.030503,            0.013578,           0.0033275,           0.0062875,           0.0062875,           0.0062875
                  77,            0.040866,            0.014745,           0.0058436,             0.93302,             0.86188,             0.90637,             0.40798,            0.031485,            0.012598,           0.0029572,            0.006238,            0.006238,            0.006238
                  78,            0.041912,            0.015394,           0.0052194,             0.93608,             0.85307,             0.90307,             0.42248,            0.031025,            0.012454,           0.0031475,           0.0061885,           0.0061885,           0.0061885
                  79,            0.039007,            0.015139,           0.0061208,             0.91964,              0.8273,             0.87532,             0.36615,            0.032998,            0.012248,           0.0031014,            0.006139,            0.006139,            0.006139
                  80,            0.043204,             0.01559,           0.0075981,             0.93912,             0.87994,             0.91136,             0.42586,             0.03035,            0.012175,           0.0032027,           0.0060895,           0.0060895,           0.0060895
                  81,            0.040371,            0.014788,           0.0064149,             0.97283,             0.85112,             0.92561,             0.43932,            0.029957,            0.011927,           0.0028763,             0.00604,             0.00604,             0.00604
                  82,            0.041994,             0.01537,           0.0066436,             0.95699,             0.86119,             0.92346,             0.41763,            0.030161,             0.01205,           0.0027768,           0.0059905,           0.0059905,           0.0059905
                  83,            0.042882,            0.015644,           0.0062851,             0.96661,             0.87436,             0.93015,             0.45028,            0.030057,            0.011764,           0.0027965,            0.005941,            0.005941,            0.005941
                  84,             0.03866,            0.014544,           0.0057479,             0.95962,             0.87919,             0.93729,             0.44303,            0.030041,            0.011658,           0.0026109,           0.0058915,           0.0058915,           0.0058915
                  85,            0.041031,             0.01497,           0.0064724,             0.95067,             0.85396,             0.91883,             0.43661,            0.031194,            0.011717,           0.0024433,            0.005842,            0.005842,            0.005842
                  86,            0.043856,            0.015274,           0.0071839,             0.94593,             0.88202,             0.92081,              0.4285,            0.030159,            0.011857,           0.0027411,           0.0057925,           0.0057925,           0.0057925
                  87,            0.039042,            0.014907,           0.0056313,             0.94987,             0.87799,             0.92806,             0.41992,            0.029423,             0.01182,           0.0029971,            0.005743,            0.005743,            0.005743
                  88,            0.039156,            0.014449,           0.0058202,             0.93032,             0.92113,               0.936,             0.41752,            0.030294,            0.011555,            0.002698,           0.0056935,           0.0056935,           0.0056935
                  89,            0.038369,            0.015305,           0.0057764,             0.94996,             0.88343,              0.9351,              0.4419,            0.029601,            0.011693,           0.0027395,            0.005644,            0.005644,            0.005644
                  90,            0.039153,            0.014749,           0.0062159,             0.94639,             0.89046,             0.92992,             0.43134,            0.029415,            0.011824,           0.0024304,           0.0055945,           0.0055945,           0.0055945
                  91,            0.039486,            0.014833,           0.0059336,               0.933,             0.90507,             0.93022,             0.43061,            0.030484,            0.011829,           0.0023976,            0.005545,            0.005545,            0.005545
                  92,            0.037397,            0.014199,           0.0060579,             0.94522,             0.90726,             0.93538,              0.4515,            0.030685,             0.01187,           0.0022765,           0.0054955,           0.0054955,           0.0054955
                  93,            0.037392,            0.014398,            0.005526,              0.9546,             0.87499,              0.9291,             0.44996,            0.028949,             0.01183,           0.0023412,            0.005446,            0.005446,            0.005446
                  94,            0.038571,            0.014143,           0.0051352,             0.94653,             0.86266,             0.91688,             0.44484,            0.029331,            0.011822,           0.0024087,           0.0053965,           0.0053965,           0.0053965
                  95,            0.039126,            0.014401,            0.004951,             0.95383,             0.89699,              0.9396,             0.44699,            0.029785,             0.01173,           0.0024243,            0.005347,            0.005347,            0.005347
                  96,            0.035678,              0.0143,           0.0047188,             0.94611,             0.89373,             0.93404,              0.4459,            0.029089,            0.011582,           0.0022794,           0.0052975,           0.0052975,           0.0052975
                  97,            0.035773,            0.014327,           0.0042397,             0.94307,             0.89542,             0.93623,             0.45345,            0.028663,            0.011711,           0.0023837,            0.005248,            0.005248,            0.005248
                  98,            0.035447,            0.014431,           0.0059631,             0.94095,              0.9063,             0.93334,             0.45018,             0.02879,            0.011681,           0.0022759,           0.0051985,           0.0051985,           0.0051985
                  99,            0.036644,            0.014601,           0.0055177,             0.96148,             0.90983,             0.95032,             0.45671,            0.028263,            0.011551,           0.0021521,            0.005149,            0.005149,            0.005149
                 100,            0.037563,            0.014183,           0.0079009,             0.96421,             0.88252,             0.93722,             0.44607,            0.029796,            0.011798,           0.0022199,           0.0050995,           0.0050995,           0.0050995
                 101,            0.038423,            0.014047,           0.0052177,             0.96269,             0.88753,             0.93611,             0.44788,            0.030238,            0.011613,            0.002229,             0.00505,             0.00505,             0.00505
                 102,            0.041102,            0.014574,           0.0062728,             0.95869,             0.88132,             0.93141,             0.45731,              0.0297,            0.011374,           0.0024294,           0.0050005,           0.0050005,           0.0050005
                 103,            0.040239,            0.015299,           0.0045802,             0.93908,             0.87286,             0.91821,             0.44729,            0.029021,            0.011544,           0.0026109,            0.004951,            0.004951,            0.004951
                 104,            0.037945,            0.015084,           0.0047527,             0.92849,              0.8798,             0.92594,             0.45464,            0.029488,            0.011624,           0.0025235,           0.0049015,           0.0049015,           0.0049015
                 105,            0.035728,            0.014625,           0.0041137,             0.93104,             0.89017,             0.93473,             0.45106,            0.028464,            0.011536,           0.0024739,            0.004852,            0.004852,            0.004852
                 106,            0.036095,            0.014377,           0.0035695,             0.95104,             0.89067,             0.93275,             0.45525,            0.028681,            0.011324,           0.0023388,           0.0048025,           0.0048025,           0.0048025
                 107,            0.033129,            0.013745,           0.0045044,             0.96466,             0.87034,             0.92253,             0.43602,            0.029847,            0.011526,           0.0026187,            0.004753,            0.004753,            0.004753
                 108,             0.03581,            0.014129,            0.004466,             0.94246,             0.87897,             0.93256,             0.44235,            0.029161,            0.011498,            0.002383,           0.0047035,           0.0047035,           0.0047035
                 109,            0.036119,            0.014118,             0.00385,             0.94807,             0.88811,             0.93238,              0.4495,            0.028547,            0.011253,           0.0021958,            0.004654,            0.004654,            0.004654
                 110,            0.036586,            0.013732,           0.0057441,             0.95179,             0.89555,             0.93243,             0.45773,            0.028935,            0.011324,           0.0022486,           0.0046045,           0.0046045,           0.0046045
                 111,             0.03723,            0.014682,           0.0049151,             0.90559,             0.87265,             0.90411,             0.43171,            0.030688,            0.011908,            0.003186,            0.004555,            0.004555,            0.004555
                 112,             0.03769,            0.014841,           0.0041948,             0.91731,             0.89011,             0.93053,             0.44163,            0.029824,            0.011698,           0.0021341,           0.0045055,           0.0045055,           0.0045055
                 113,            0.038761,            0.014188,           0.0038471,             0.95437,             0.86884,             0.92727,             0.45618,            0.028281,            0.011817,           0.0022187,            0.004456,            0.004456,            0.004456
                 114,            0.036452,            0.014331,           0.0057453,             0.96522,             0.87871,             0.93824,             0.46064,            0.028799,            0.011588,           0.0021392,           0.0044065,           0.0044065,           0.0044065
                 115,            0.039601,            0.014884,           0.0051718,             0.96994,             0.88182,             0.94156,             0.46756,            0.028833,            0.011381,             0.00205,            0.004357,            0.004357,            0.004357
                 116,             0.03565,            0.013554,           0.0051132,             0.96426,             0.87265,              0.9426,             0.48181,            0.028461,            0.011433,           0.0023655,           0.0043075,           0.0043075,           0.0043075
                 117,            0.034671,             0.01408,           0.0047611,             0.95432,              0.8779,             0.93406,             0.46503,            0.028968,            0.011435,           0.0022321,            0.004258,            0.004258,            0.004258
                 118,            0.035034,            0.013762,            0.005086,             0.96119,             0.89065,             0.94045,             0.47809,             0.02748,            0.011298,            0.002148,           0.0042085,           0.0042085,           0.0042085
                 119,            0.036641,            0.013784,           0.0046315,             0.96592,             0.88876,             0.93777,             0.46226,             0.02947,            0.011419,           0.0021617,            0.004159,            0.004159,            0.004159
                 120,            0.035707,            0.014564,           0.0046529,             0.96137,             0.87907,             0.93435,             0.45536,            0.028311,            0.011509,           0.0020214,           0.0041095,           0.0041095,           0.0041095
                 121,            0.036372,            0.013897,           0.0039082,             0.97488,             0.86659,             0.93632,             0.46514,            0.028935,            0.011269,           0.0020603,             0.00406,             0.00406,             0.00406
                 122,            0.035962,             0.01397,            0.004511,             0.95351,             0.88176,             0.94079,             0.47849,            0.028425,            0.011238,           0.0020694,           0.0040105,           0.0040105,           0.0040105
                 123,             0.03481,            0.013681,           0.0047074,             0.95818,             0.88796,             0.94004,             0.47831,            0.027879,             0.01152,           0.0019698,            0.003961,            0.003961,            0.003961
                 124,            0.032671,            0.013762,           0.0040278,             0.96445,             0.89987,             0.93647,             0.46653,            0.027991,             0.01143,           0.0016975,           0.0039115,           0.0039115,           0.0039115
                 125,            0.036008,            0.013361,           0.0047041,             0.96146,              0.9013,             0.93424,             0.45903,            0.028519,            0.011311,           0.0017047,            0.003862,            0.003862,            0.003862
                 126,             0.03401,            0.013447,           0.0040689,             0.95604,             0.90185,             0.93919,             0.47158,            0.027806,            0.011117,           0.0018529,           0.0038125,           0.0038125,           0.0038125
                 127,            0.031878,            0.013099,           0.0027967,             0.96041,             0.90457,             0.94384,             0.47963,            0.028383,            0.011013,           0.0018119,            0.003763,            0.003763,            0.003763
                 128,            0.034706,             0.01369,           0.0027384,             0.96853,             0.88868,             0.94017,             0.48097,             0.02741,            0.011032,           0.0018237,           0.0037135,           0.0037135,           0.0037135
                 129,             0.03394,             0.01386,           0.0032774,             0.95868,             0.89865,             0.93642,             0.46987,            0.028186,            0.011018,           0.0018775,            0.003664,            0.003664,            0.003664
                 130,            0.034989,            0.013471,           0.0039545,             0.93797,             0.91745,             0.94262,             0.46758,            0.027316,            0.011095,           0.0019048,           0.0036145,           0.0036145,           0.0036145
                 131,            0.033065,             0.01357,           0.0039853,              0.9269,             0.93499,             0.94237,             0.46206,            0.027146,             0.01123,           0.0019533,            0.003565,            0.003565,            0.003565
                 132,            0.032226,            0.013642,           0.0029681,             0.94436,              0.9174,             0.94702,             0.47563,            0.027191,            0.011339,           0.0017685,           0.0035155,           0.0035155,           0.0035155
                 133,            0.035862,            0.013621,           0.0048942,             0.94663,             0.92488,             0.94931,             0.47343,            0.027177,            0.010983,           0.0016468,            0.003466,            0.003466,            0.003466
                 134,            0.032855,             0.01324,           0.0045393,             0.94466,             0.91886,             0.94822,             0.48145,            0.026784,              0.0109,           0.0016719,           0.0034165,           0.0034165,           0.0034165
                 135,             0.03274,            0.013255,           0.0030268,              0.9484,             0.91461,             0.95161,             0.47642,            0.027377,            0.011027,           0.0015977,            0.003367,            0.003367,            0.003367
                 136,            0.033074,            0.013192,            0.003337,             0.95303,              0.9182,             0.94721,             0.48645,            0.026837,            0.011032,           0.0016092,           0.0033175,           0.0033175,           0.0033175
                 137,            0.033013,            0.013323,            0.003707,             0.93758,             0.91747,             0.94717,             0.47612,            0.027161,            0.010983,           0.0016134,            0.003268,            0.003268,            0.003268
                 138,            0.030322,            0.013092,           0.0025357,             0.94052,             0.91465,             0.94666,             0.48368,            0.026713,            0.010899,           0.0016353,           0.0032185,           0.0032185,           0.0032185
                 139,            0.033769,            0.013375,           0.0031571,             0.95437,             0.91911,             0.95307,             0.48591,            0.027083,             0.01088,           0.0016468,            0.003169,            0.003169,            0.003169
                 140,            0.034674,            0.013167,           0.0034438,             0.95476,             0.90341,             0.94133,             0.48328,             0.02734,            0.010869,           0.0016518,           0.0031195,           0.0031195,           0.0031195
                 141,            0.034613,             0.01286,           0.0034004,             0.95353,             0.91442,             0.94604,             0.48783,            0.027129,            0.010867,           0.0018675,             0.00307,             0.00307,             0.00307
                 142,            0.032892,            0.013876,           0.0035535,              0.9322,             0.91933,              0.9457,             0.49279,            0.026627,            0.010771,           0.0019343,           0.0030205,           0.0030205,           0.0030205
                 143,            0.031011,            0.013132,            0.003447,             0.92268,             0.92772,             0.94732,             0.49448,            0.026822,            0.010732,           0.0017231,            0.002971,            0.002971,            0.002971
                 144,            0.032919,            0.013046,            0.004605,             0.94068,             0.92479,             0.94934,             0.49588,            0.026757,            0.010778,           0.0015787,           0.0029215,           0.0029215,           0.0029215
                 145,            0.031458,            0.013003,           0.0034416,             0.93822,              0.9246,             0.94658,             0.49657,            0.027682,            0.010705,           0.0015234,            0.002872,            0.002872,            0.002872
                 146,            0.031623,            0.013087,           0.0035433,             0.93304,             0.93561,             0.94772,             0.49624,            0.028391,            0.010767,           0.0013857,           0.0028225,           0.0028225,           0.0028225
                 147,            0.032807,             0.01306,           0.0029549,             0.93738,             0.90933,             0.94098,             0.49238,             0.02858,            0.010758,           0.0013865,            0.002773,            0.002773,            0.002773
                 148,            0.036935,            0.013306,           0.0032721,             0.92351,             0.91808,              0.9423,             0.47735,            0.028816,            0.010793,           0.0015612,           0.0027235,           0.0027235,           0.0027235
                 149,            0.030831,            0.012657,           0.0039643,             0.91736,             0.91401,              0.9414,             0.49229,            0.027486,            0.010801,           0.0020861,            0.002674,            0.002674,            0.002674
                 150,            0.032044,            0.013002,           0.0041448,             0.95351,             0.90876,             0.94856,              0.4788,            0.027577,            0.010924,           0.0018295,           0.0026245,           0.0026245,           0.0026245
                 151,            0.031503,            0.013092,           0.0028095,             0.94881,             0.90539,             0.95116,             0.49358,            0.026849,            0.011107,           0.0017219,            0.002575,            0.002575,            0.002575
                 152,            0.031583,            0.013609,           0.0039922,             0.92632,             0.93211,             0.94618,             0.49088,            0.026933,            0.011233,            0.001522,           0.0025255,           0.0025255,           0.0025255
                 153,            0.031909,            0.013541,            0.003112,              0.9427,             0.92273,             0.94507,              0.4937,            0.026627,            0.011193,           0.0015387,            0.002476,            0.002476,            0.002476
                 154,            0.030239,            0.012999,             0.00289,             0.97151,             0.90291,             0.94399,              0.4949,            0.027178,             0.01108,           0.0014948,           0.0024265,           0.0024265,           0.0024265
                 155,            0.030373,            0.012644,           0.0023986,             0.97148,             0.89704,             0.94592,             0.49002,            0.027153,            0.011089,           0.0014694,            0.002377,            0.002377,            0.002377
                 156,            0.031883,             0.01289,            0.002711,             0.93966,             0.92571,             0.94411,             0.49418,            0.026661,            0.011046,           0.0016071,           0.0023275,           0.0023275,           0.0023275
                 157,            0.029923,            0.012475,           0.0029759,             0.94115,             0.92157,             0.94618,             0.49813,            0.026859,            0.011083,           0.0016252,            0.002278,            0.002278,            0.002278
                 158,            0.030265,            0.012474,           0.0024685,             0.94215,             0.91655,             0.94856,             0.48548,             0.02631,             0.01111,           0.0016479,           0.0022285,           0.0022285,           0.0022285
                 159,            0.031297,            0.013007,           0.0040787,             0.94493,             0.90204,             0.94156,             0.46938,            0.026793,            0.011069,           0.0017465,            0.002179,            0.002179,            0.002179
                 160,            0.030058,            0.012764,           0.0037174,             0.95447,             0.89408,             0.94238,             0.48629,            0.026789,            0.010908,           0.0016649,           0.0021295,           0.0021295,           0.0021295
                 161,            0.031778,            0.012688,           0.0029219,             0.93461,             0.92777,              0.9492,             0.49049,            0.026714,            0.010916,           0.0015429,             0.00208,             0.00208,             0.00208
                 162,            0.031261,            0.012908,           0.0029539,             0.94651,             0.91275,             0.94502,             0.49397,            0.026811,            0.010991,           0.0014428,           0.0020305,           0.0020305,           0.0020305
                 163,            0.030035,            0.012285,           0.0026411,              0.9596,             0.91855,             0.95084,             0.48836,            0.026452,            0.011055,           0.0013155,            0.001981,            0.001981,            0.001981
                 164,             0.02853,             0.01247,           0.0030658,             0.94318,             0.93036,             0.94797,             0.49946,            0.026565,            0.011087,           0.0013172,           0.0019315,           0.0019315,           0.0019315
                 165,             0.03144,            0.013278,           0.0022033,             0.93844,             0.92516,             0.94625,             0.48882,            0.026606,            0.011076,           0.0014597,            0.001882,            0.001882,            0.001882
                 166,            0.028238,            0.012273,           0.0022988,             0.93881,             0.91819,             0.94724,             0.49165,            0.027022,            0.011048,           0.0014657,           0.0018325,           0.0018325,           0.0018325
                 167,            0.029581,            0.012764,           0.0018928,             0.94996,             0.91838,             0.95192,             0.49397,            0.027021,            0.010946,           0.0014319,            0.001783,            0.001783,            0.001783
                 168,            0.030364,            0.012646,            0.002652,             0.95142,             0.92398,             0.94893,             0.49144,            0.026209,            0.010894,           0.0013961,           0.0017335,           0.0017335,           0.0017335
                 169,            0.029047,            0.013155,           0.0022754,             0.94613,             0.92001,             0.94914,             0.50106,            0.026235,            0.010813,           0.0013629,            0.001684,            0.001684,            0.001684
                 170,            0.030348,            0.012868,           0.0025903,             0.94442,             0.92638,             0.94826,             0.49845,            0.026182,             0.01084,           0.0013827,           0.0016345,           0.0016345,           0.0016345
                 171,            0.028844,            0.013418,             0.00221,             0.94845,             0.91907,             0.94593,             0.49442,            0.025945,            0.010825,           0.0013878,            0.001585,            0.001585,            0.001585
                 172,            0.028044,            0.012475,           0.0020475,             0.94977,             0.91562,             0.94693,             0.49909,            0.025607,            0.010884,           0.0013793,           0.0015355,           0.0015355,           0.0015355
                 173,             0.03037,            0.012416,           0.0020514,             0.95493,             0.91276,             0.94515,             0.49652,            0.025832,            0.010954,           0.0014017,            0.001486,            0.001486,            0.001486
                 174,             0.02901,            0.012575,           0.0022523,             0.93349,             0.93395,             0.94592,             0.49279,            0.025973,            0.010781,             0.00136,           0.0014365,           0.0014365,           0.0014365
                 175,              0.0299,            0.013539,           0.0023896,              0.9492,             0.92686,              0.9518,             0.50485,            0.026004,            0.010724,           0.0013465,            0.001387,            0.001387,            0.001387
                 176,            0.028433,            0.012411,           0.0016765,             0.95407,             0.92405,              0.9525,             0.50396,            0.025779,            0.010821,           0.0013625,           0.0013375,           0.0013375,           0.0013375
                 177,              0.0271,            0.012667,           0.0019585,             0.95087,             0.92476,             0.95126,             0.50414,            0.026096,            0.010865,           0.0014006,            0.001288,            0.001288,            0.001288
                 178,            0.026388,            0.012452,           0.0016576,             0.94651,               0.923,             0.94803,             0.50449,            0.025548,            0.010875,           0.0013988,           0.0012385,           0.0012385,           0.0012385
                 179,            0.028348,            0.012673,           0.0030774,             0.94689,             0.92148,             0.94484,             0.49438,            0.025692,            0.010761,           0.0013638,            0.001189,            0.001189,            0.001189
                 180,            0.029453,            0.012794,           0.0026043,             0.95834,             0.91733,             0.94887,             0.49784,            0.025882,            0.010789,           0.0013153,           0.0011395,           0.0011395,           0.0011395
                 181,            0.028473,            0.012477,           0.0022936,             0.95265,             0.92939,             0.95142,             0.49798,            0.025795,            0.010809,           0.0013028,             0.00109,             0.00109,             0.00109
                 182,            0.028324,            0.012459,           0.0019193,              0.9466,             0.91467,             0.94467,             0.49455,            0.026117,            0.010848,           0.0013132,           0.0010405,           0.0010405,           0.0010405
                 183,            0.029356,            0.012703,            0.003578,             0.95437,             0.91491,             0.95042,             0.50744,            0.025541,            0.010811,           0.0013132,            0.000991,            0.000991,            0.000991
                 184,            0.027983,            0.012892,           0.0025631,             0.95246,             0.91897,             0.94813,             0.50401,            0.025867,            0.010776,           0.0013071,           0.0009415,           0.0009415,           0.0009415
                 185,            0.027208,            0.012446,           0.0024887,             0.95587,             0.91898,             0.94605,             0.50406,            0.025502,              0.0108,           0.0013051,            0.000892,            0.000892,            0.000892
                 186,            0.028043,            0.012252,            0.003118,             0.95491,             0.91842,             0.94713,             0.50056,            0.025583,            0.010805,           0.0012869,           0.0008425,           0.0008425,           0.0008425
                 187,            0.026881,            0.012273,           0.0021586,             0.95228,              0.9148,             0.94728,             0.49569,            0.025704,            0.010731,           0.0012944,            0.000793,            0.000793,            0.000793
                 188,            0.028154,            0.012503,           0.0026297,             0.95994,             0.92402,              0.9504,             0.49985,            0.025299,            0.010703,           0.0012784,           0.0007435,           0.0007435,           0.0007435
                 189,            0.025187,             0.01273,           0.0016661,             0.95789,             0.92415,             0.95036,             0.50167,            0.025299,            0.010691,           0.0012481,            0.000694,            0.000694,            0.000694
                 190,            0.026276,            0.012488,           0.0024498,             0.96238,             0.92072,             0.95109,             0.50031,            0.025391,            0.010723,           0.0012344,           0.0006445,           0.0006445,           0.0006445
                 191,            0.026011,            0.012287,           0.0018118,              0.9519,             0.91835,             0.94936,             0.50506,            0.025053,            0.010712,             0.00121,            0.000595,            0.000595,            0.000595
                 192,            0.026917,            0.012097,           0.0022713,             0.95405,              0.9194,             0.95635,             0.50289,            0.025229,            0.010745,           0.0012023,           0.0005455,           0.0005455,           0.0005455
                 193,            0.027752,            0.012482,           0.0019695,             0.96902,             0.90241,             0.95131,             0.50304,            0.025084,            0.010724,            0.001186,            0.000496,            0.000496,            0.000496
                 194,            0.027573,            0.012552,           0.0020059,             0.96912,             0.91049,             0.95099,             0.50273,            0.025304,            0.010815,            0.001182,           0.0004465,           0.0004465,           0.0004465
                 195,            0.026493,            0.012007,           0.0028567,             0.96807,              0.9147,             0.95072,              0.5051,            0.025475,            0.010831,           0.0011794,            0.000397,            0.000397,            0.000397
                 196,            0.025988,            0.012443,           0.0015634,             0.95381,             0.91784,              0.9473,             0.50111,            0.025466,            0.010827,           0.0012101,           0.0003475,           0.0003475,           0.0003475
                 197,            0.027279,            0.012284,           0.0022347,             0.96237,             0.90546,             0.94477,             0.49965,            0.025437,            0.010829,           0.0012444,            0.000298,            0.000298,            0.000298
                 198,            0.027767,            0.012665,           0.0024972,             0.95433,             0.91548,             0.94497,             0.50231,            0.025252,            0.010814,           0.0012563,           0.0002485,           0.0002485,           0.0002485
                 199,            0.027364,            0.012457,           0.0030708,              0.9553,             0.91458,             0.94536,             0.50262,            0.025289,            0.010801,            0.001247,            0.000199,            0.000199,            0.000199

训练曲线如下

训练混淆矩阵如下

2.4.7 电路板缺陷验证测试

python 复制代码
class CPcbDefectCnnModel(object):
    def __init__(self, model_path):
        self.weights= model_path
        self.data='data/pcbDefect.yaml'
        self.imgsz=(640, 640)
        self.conf_thres=0.5
        self.iou_thres=0.45
        # Load model
        self.device = select_device()
        print(self.device)
        self.model = DetectMultiBackend(self.weights, device=self.device, dnn=self.dnn, data=self.data, fp16=self.half)
        stride, self.names, pt =  self.model.stride,  self.model.names,  self.model.pt
        imgsz = check_img_size(self.imgsz, s=stride)  # check image size

    def predict(self, image_numpy_data):
        # Padded resize
        img = letterbox(image_numpy_data, 640, 32, True)[0]
        print(img.shape)
        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)
        pred = self.model(im, augment=self.augment, visualize=self.visualize)
        pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, self.classes)
        detect_results = []
        # Process predictions
        for i, det in enumerate(pred):  # per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], image_numpy_data.shape).round()
                detections = det.cpu().numpy()
                for v in detections:
                    detect_results.append(v)

                bboxes = []
                scores = []
                classIds = []

                # [x,y,w,h,p,class]
                for detection in detect_results:
                    print(detection)
                    score = detection[4]
                    classId = detection[5]
                    (x1, y1, x2, y2) = detection[:4]

                    bboxes.append([int(x1), int(y1), \
                                   int(x2 - x1), int(y2 - y1)])
                    scores.append(float(score))
                    classIds.append(classId)
                print(detect_results)
                for *xyxy, conf, cls in reversed(det):

                    c = int(cls)  # integer class
                    label = None if self.hide_labels else (self.names[c] if self.hide_conf else f'{self.names[c]} {conf:.2f}')
                    annotator.box_label(xyxy, label, color=colors(c, True))

        return im0

模型验证结果如下:

觉得不错的小伙伴,感谢点赞、关注加收藏哦!更多干货内容持续更新...

代码下载链接

关注博主的G Z H【小蜜蜂视觉】,回复【电路板缺陷检测】即可获取下载方式

参考文献

[1] 袁氢.基于特征融合与神经网络的深度学习图像识别技术研究[D]:(硕士学位论文).武汉:武汉科技大学,2020.

[2] 白天毅.基于神经网络的深度学习图像识别关键技术研究[D]:(硕士学位论文).西安:西安工业大学,2019.

[3] Hubel D H,Wiesel T N.Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J].Journal of Physiology,1962,160(1):106--154.

[4] Fukushima K.A neural network model for selective attention in visual pattern DEEP[J].Biological Cybernetics,1986,55(1):5-15.

[5] 徐珊珊. 卷积神经网络的研究与应用[D]:(硕士学位论文). 南京:南京林业大学,2013.

[6] VapnikV著,张学工译. 统计学习理论的本质[M]. 北京:清华大学出版社,2000.

[7] 郑君里,应启珩等.信号与系统[M]. 北京:高等教育出版社,2000.

[8] Haykin S著,申富饶译. 神经网络与机器学习[M]. 北京:机器工业出版社,2011.

[9] Lecun Y,Bottou L,et al.Gradient-based learning applied to document DEEP[J].Proceedings of the IEEE,1998,86(11):2278-2324.

[10] 田一然.深度学习图像识别技术的研究与实现[D]:(硕士学位论文).长春:吉林大学,2015.

[11] Naigong Y,Panna J,et al.Handwritten digits DEEP base on improved LeNet5[C].Chinese Control and Decision Conference (CCDC),IEEE,2015:4871-4875.

[12] 尹宝才,王文通等.深度学习研究综述[J]. 北京大学学报,2015,41(1):49-51.

[13] Dalal N, Triggs B.Histograms of oriented gradients for human detection[A].In Proc.IEEE CVPR[C], 2005,886-893.

[14] Zhu Q, Yeh C, Cheng T.Fasthuman detection using a cascade of histograms of oriented gradients[A]. In Proc.IEEE CVPR [C], 2006, 2:1491-1498.

[15] Ojala T, Pietikainen M, Harwood D.A comparative study of texture measures with classification based on feature distributions[J]. Pattern DEEP, 1996, 19(3):51-59.

[16] Mu Y, Yan S, Liu Y, et al.Discriminative local binary patterns for pedestrian detection in personal album[A]. In Proc.IEEE CVPR[C], 2008.

[17] Wang X, Han X, Yan S.A HOG-LBP human detector with partial occlusion handling[A]. In Proc.IEEE ICCV[C], 2009.

[18] Walk S, Majer N, Schindler K, et al.New features and insights for pedestrian detection[A]. In Proc.IEEE CVPR[C], 2010.

[19] Wu J X, Rehg J M. CENTRIST: A visual descriptor for scene categorization[J]. IEEE Trans.on Pattern Analysis and Machine Intelligent, 2011, 33(8):1489-1501.

[20] Wu J, Geyer C, Rehg J M. Real-time human detection using contour cues[C]. IEEE International Conference on Robotics and Automation. IEEE, 2011:860-867.

[21] Viola P, Jones M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154.

[22] Papageorgiou C P, Oren M, Poggio T. A general framework for object detection[C]. International Conference on Computer Vision. IEEE, 1998:555-562.

[23] Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance[J], Inter-national Journal of Computer Vision, 2005, 63(2):153-161.

[24] Guo L, Ge P S, Zhang M H, et al. Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine[J]. Expert Systems with Applications, 2012, 39(4):4274-4286.

[25] D.M. Gavrila, V. Philomin. Real-Time Object Detection for "Smart" Vehicles[C]. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE Xplore, 1999:87-93 vol.1.

相关推荐
___Dream1 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
Open-AI5 分钟前
Python如何判断一个数是几位数
python
极客代码8 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深11 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
疯一样的码农15 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
进击的六角龙1 小时前
Python中处理Excel的基本概念(如工作簿、工作表等)
开发语言·python·excel
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt