信息安全数学基础(7)最小公倍数

前言

在信息安全数学基础中,最小公倍数(Least Common Multiple, LCM)是一个重要的概念,它经常与最大公约数(Greatest Common Divisor, GCD)一起出现,两者在数论、密码学、模运算等领域都有广泛的应用。

一、定义

对于任意两个正整数 a 和 b,它们的最小公倍数 \lcm(a,b) 是能同时被 a 和 b 整除的最小的正整数。换句话说,lcm(a,b) 是 a 和 b 的公倍数集合中的最小元素。

二、性质

  1. 交换性:lcm(a,b)=lcm(b,a)
  2. 结合性(虽然不常用,但理论上存在):对于任意三个正整数 a,b,c,有 lcm(lcm(a,b),c)=lcm(a,lcm(b,c))
  3. 与GCD的关系:对于任意两个正整数 a 和 b,有 lcm(a,b)⋅gcd(a,b)=ab(注意这里 a 和 b 必须是正数)
  4. 倍数关系:如果 a∣b,则 lcm(a,b)=b
  5. 分配律(不完全分配律):对于任意三个正整数 a,b,c,有 lcm(a,lcm(b,c))∣lcm(ab,c),但不一定等于 lcm(ab,c)

三、计算方法

  1. 枚举法:直接枚举 a 和 b 的所有公倍数,找到最小的那个。这种方法效率很低,只适用于较小的数。
  2. 质因数分解法:将 a 和 b 分别进行质因数分解,然后取每个质因数的最高次幂相乘,得到的结果就是 lcm(a,b)。例如,a=22×3,b=2×32,则 lcm(a,b)=22×32=36。
  3. 利用GCD:根据 lcm(a,b)⋅gcd(a,b)=ab,可以先求出 gcd(a,b),然后用 ab 除以 gcd(a,b) 得到 lcm(a,b)。这种方法在实际应用中非常常见。

四、应用

  1. 密码学:在密码学中,最小公倍数经常用于密钥生成、加密解密算法的设计等方面。
  2. 模运算:在模运算中,最小公倍数可以帮助我们确定两个模数何时可以合并为一个模数,从而简化计算。
  3. 同余方程:在求解同余方程组时,最小公倍数可以帮助我们判断方程组是否有解,以及解的个数。

结语

每一次挑战都是一次成长的机会

每一次失败都是向成功迈进的一步

!!!

相关推荐
hnjzsyjyj7 小时前
洛谷 B4355:[GESP202506 一级] 值日 ← 最小公倍数(三种方法)
最大公约数·最小公倍数
闻缺陷则喜何志丹11 小时前
【组合数学】P9418 [POI 2021/2022 R1] Impreza krasnali|普及+
c++·数学·组合数学
躺柒16 小时前
读捍卫隐私08智能出行
信息安全·数据安全·隐私·隐私保护·互联网隐私
白帽黑客-晨哥17 小时前
网络安全怎么考公?
web安全·网络安全·信息安全·渗透测试·考公
云计算练习生18 小时前
渗透测试行业术语扫盲(第十七篇)—— 合规、开发与职业类
网络·网络安全·信息安全·渗透测试术语·网络安全规范
Whoami!19 小时前
❽⁄₇ ⟦ OSCP ⬖ 研记 ⟧ 修改漏洞利用脚本 ➱ 深入剖析JMP ESP原理
网络安全·信息安全·缓冲区溢出·溢出原理
Tisfy1 天前
LeetCode 2110.股票平滑下跌阶段的数目:数学(一次遍历)
数学·算法·leetcode·题解
躺柒2 天前
读捍卫隐私07智能家居
信息安全·智能家居·数据安全·隐私·隐私保护·互联网隐私保护
云计算练习生2 天前
渗透测试行业术语扫盲(第十三篇)—— 安全运营与审计类
网络·安全·网络安全·信息安全·渗透测试术语
闻缺陷则喜何志丹2 天前
【计算几何】凸多变形的定义
c++·数学·计算几何·凸多边形