ElasticSearch底层原理解析

Elasticsearch(简称ES)是一个基于Lucene的开源、分布式、RESTful搜索引擎。它具备全文检索、结构化搜索、数据分析、复杂语言处理、地理位置处理以及对象关联分析等功能。ES的设计允许水平扩展,支持PB级别的数据,并且提供了近实时的搜索能力。

架构原理

ES的架构包括以下几个核心概念:

  1. 节点(Node):ES集群中的一个实例。
  2. 集群(Cluster):由多个节点组成,共同工作,共享数据,提供高可用性。
  3. 索引(Index):存储文档的集合,类似于数据库中的数据库。
  4. 分片(Shard):索引可以被分成多个分片,分片可以分布在集群的不同节点上,支持数据的水平扩展。
  5. 副本(Replica):每个分片可以有多个副本,提高数据的可用性和容错性。

写入数据流程

当数据写入ES时,会经过以下步骤:

  1. 客户端发送数据到任意节点,该节点成为协调节点(Coordinator Node)。
  2. 协调节点根据文档ID的哈希值,确定数据应该路由到哪个主分片。
  3. 主分片接收数据,并在内存中进行索引构建,同时将数据写入事务日志(Translog)以保证数据不丢失。
  4. 数据被刷新(Refresh)到磁盘上的Lucene索引段(Segment)中,此时数据可以被搜索到。
  5. 通过段合并(Segment Merging)优化存储和搜索性能。

检索数据流程

检索数据时,流程如下:

  1. 客户端发送搜索请求到任意节点,该节点成为协调节点。
  2. 协调节点将查询请求分发到所有相关的分片。
  3. 每个分片并行处理查询,并返回结果给协调节点。
  4. 协调节点聚合结果,并进行排序、分页等操作。
  5. 协调节点返回最终结果给客户端。

优势

  • 高可用性:通过分片和副本机制,即使部分节点故障,服务也不会中断。
  • 水平扩展:可以简单地添加更多节点来扩展存储和处理能力。
  • 高性能:并行处理查询请求,提高查询性能。
  • 容错性:副本机制确保数据的持久性和一致性。

总结

Elasticsearch通过其分布式架构,提供了一个强大、灵活且可扩展的搜索解决方案。它的设计哲学是简单性和易用性,同时隐藏了底层Lucene的复杂性。通过分片和副本机制,ES能够处理大规模数据集,并提供快速、准确的搜索结果。

相关推荐
云中隐龙1 分钟前
mac使用本地jdk启动elasticsearch解决elasticsearch启动时jdk损坏问题
java·elasticsearch·macos
望获linux18 分钟前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
励志成为糕手34 分钟前
宽依赖的代价:Spark 与 MapReduce Shuffle 的数据重分布对比
大数据·spark·mapreduce·分布式计算·sortshuffle
Elastic 中国社区官方博客5 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
点控云6 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
风清再凯8 小时前
04_es原理&filebeat使用
大数据·elasticsearch·搜索引擎
小小王app小程序开发8 小时前
盲盒小程序开发新视角:从用户体验到运营落地的分析拆解
大数据·ux
舰长1159 小时前
k8s 持久化存储方案-PVC
云原生·容器·kubernetes
weixin_5259363310 小时前
部分Spark SQL编程要点
大数据·python·sql·spark
南方以南_10 小时前
对比k8s的service和kube-proxy
云原生·容器·kubernetes