ElasticSearch底层原理解析

Elasticsearch(简称ES)是一个基于Lucene的开源、分布式、RESTful搜索引擎。它具备全文检索、结构化搜索、数据分析、复杂语言处理、地理位置处理以及对象关联分析等功能。ES的设计允许水平扩展,支持PB级别的数据,并且提供了近实时的搜索能力。

架构原理

ES的架构包括以下几个核心概念:

  1. 节点(Node):ES集群中的一个实例。
  2. 集群(Cluster):由多个节点组成,共同工作,共享数据,提供高可用性。
  3. 索引(Index):存储文档的集合,类似于数据库中的数据库。
  4. 分片(Shard):索引可以被分成多个分片,分片可以分布在集群的不同节点上,支持数据的水平扩展。
  5. 副本(Replica):每个分片可以有多个副本,提高数据的可用性和容错性。

写入数据流程

当数据写入ES时,会经过以下步骤:

  1. 客户端发送数据到任意节点,该节点成为协调节点(Coordinator Node)。
  2. 协调节点根据文档ID的哈希值,确定数据应该路由到哪个主分片。
  3. 主分片接收数据,并在内存中进行索引构建,同时将数据写入事务日志(Translog)以保证数据不丢失。
  4. 数据被刷新(Refresh)到磁盘上的Lucene索引段(Segment)中,此时数据可以被搜索到。
  5. 通过段合并(Segment Merging)优化存储和搜索性能。

检索数据流程

检索数据时,流程如下:

  1. 客户端发送搜索请求到任意节点,该节点成为协调节点。
  2. 协调节点将查询请求分发到所有相关的分片。
  3. 每个分片并行处理查询,并返回结果给协调节点。
  4. 协调节点聚合结果,并进行排序、分页等操作。
  5. 协调节点返回最终结果给客户端。

优势

  • 高可用性:通过分片和副本机制,即使部分节点故障,服务也不会中断。
  • 水平扩展:可以简单地添加更多节点来扩展存储和处理能力。
  • 高性能:并行处理查询请求,提高查询性能。
  • 容错性:副本机制确保数据的持久性和一致性。

总结

Elasticsearch通过其分布式架构,提供了一个强大、灵活且可扩展的搜索解决方案。它的设计哲学是简单性和易用性,同时隐藏了底层Lucene的复杂性。通过分片和副本机制,ES能够处理大规模数据集,并提供快速、准确的搜索结果。

相关推荐
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-10-11
人工智能·经验分享·搜索引擎·产品运营
weixin_445476681 小时前
从“用框架”到“控系统”———架构通用能力(模块边界、分层设计、缓存策略、事务一致性、分布式思维)
分布式·缓存·架构
gb42152871 小时前
elasticsearch索引多长时间刷新一次(智能刷新索引根据数据条数去更新)
大数据·elasticsearch·jenkins
東雪蓮☆2 小时前
K8S 概念、安装与核心工作机制详解
linux·运维·云原生·容器·kubernetes
Mr.wangh2 小时前
Redis作为分布式锁
数据库·redis·分布式
小马爱打代码2 小时前
分布式锁:Redisson的公平锁
分布式
IT毕设梦工厂2 小时前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
数在表哥3 小时前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能
爱思德学术3 小时前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
张忠琳3 小时前
【kubernetes/k8s源码分析】kube-controller-manager之node controller源码分析
云原生·容器·kubernetes