ElasticSearch底层原理解析

Elasticsearch(简称ES)是一个基于Lucene的开源、分布式、RESTful搜索引擎。它具备全文检索、结构化搜索、数据分析、复杂语言处理、地理位置处理以及对象关联分析等功能。ES的设计允许水平扩展,支持PB级别的数据,并且提供了近实时的搜索能力。

架构原理

ES的架构包括以下几个核心概念:

  1. 节点(Node):ES集群中的一个实例。
  2. 集群(Cluster):由多个节点组成,共同工作,共享数据,提供高可用性。
  3. 索引(Index):存储文档的集合,类似于数据库中的数据库。
  4. 分片(Shard):索引可以被分成多个分片,分片可以分布在集群的不同节点上,支持数据的水平扩展。
  5. 副本(Replica):每个分片可以有多个副本,提高数据的可用性和容错性。

写入数据流程

当数据写入ES时,会经过以下步骤:

  1. 客户端发送数据到任意节点,该节点成为协调节点(Coordinator Node)。
  2. 协调节点根据文档ID的哈希值,确定数据应该路由到哪个主分片。
  3. 主分片接收数据,并在内存中进行索引构建,同时将数据写入事务日志(Translog)以保证数据不丢失。
  4. 数据被刷新(Refresh)到磁盘上的Lucene索引段(Segment)中,此时数据可以被搜索到。
  5. 通过段合并(Segment Merging)优化存储和搜索性能。

检索数据流程

检索数据时,流程如下:

  1. 客户端发送搜索请求到任意节点,该节点成为协调节点。
  2. 协调节点将查询请求分发到所有相关的分片。
  3. 每个分片并行处理查询,并返回结果给协调节点。
  4. 协调节点聚合结果,并进行排序、分页等操作。
  5. 协调节点返回最终结果给客户端。

优势

  • 高可用性:通过分片和副本机制,即使部分节点故障,服务也不会中断。
  • 水平扩展:可以简单地添加更多节点来扩展存储和处理能力。
  • 高性能:并行处理查询请求,提高查询性能。
  • 容错性:副本机制确保数据的持久性和一致性。

总结

Elasticsearch通过其分布式架构,提供了一个强大、灵活且可扩展的搜索解决方案。它的设计哲学是简单性和易用性,同时隐藏了底层Lucene的复杂性。通过分片和副本机制,ES能够处理大规模数据集,并提供快速、准确的搜索结果。

相关推荐
2401_883041081 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
青云交1 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)
大数据·计算资源·应用案例·数据交互·impala 性能优化·机器学习融合·行业拓展
Json_181790144804 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
YCyjs5 小时前
K8S群集调度二
云原生·容器·kubernetes
Hoxy.R5 小时前
K8s小白入门
云原生·容器·kubernetes
WX187021128735 小时前
在分布式光伏电站如何进行电能质量的治理?
分布式
Qspace丨轻空间6 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客7 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
掘金-我是哪吒7 小时前
微服务mysql,redis,elasticsearch, kibana,cassandra,mongodb, kafka
redis·mysql·mongodb·elasticsearch·微服务
Lovely_red_scarf7 小时前
Jenkins系列
jenkins