ElasticSearch底层原理解析

Elasticsearch(简称ES)是一个基于Lucene的开源、分布式、RESTful搜索引擎。它具备全文检索、结构化搜索、数据分析、复杂语言处理、地理位置处理以及对象关联分析等功能。ES的设计允许水平扩展,支持PB级别的数据,并且提供了近实时的搜索能力。

架构原理

ES的架构包括以下几个核心概念:

  1. 节点(Node):ES集群中的一个实例。
  2. 集群(Cluster):由多个节点组成,共同工作,共享数据,提供高可用性。
  3. 索引(Index):存储文档的集合,类似于数据库中的数据库。
  4. 分片(Shard):索引可以被分成多个分片,分片可以分布在集群的不同节点上,支持数据的水平扩展。
  5. 副本(Replica):每个分片可以有多个副本,提高数据的可用性和容错性。

写入数据流程

当数据写入ES时,会经过以下步骤:

  1. 客户端发送数据到任意节点,该节点成为协调节点(Coordinator Node)。
  2. 协调节点根据文档ID的哈希值,确定数据应该路由到哪个主分片。
  3. 主分片接收数据,并在内存中进行索引构建,同时将数据写入事务日志(Translog)以保证数据不丢失。
  4. 数据被刷新(Refresh)到磁盘上的Lucene索引段(Segment)中,此时数据可以被搜索到。
  5. 通过段合并(Segment Merging)优化存储和搜索性能。

检索数据流程

检索数据时,流程如下:

  1. 客户端发送搜索请求到任意节点,该节点成为协调节点。
  2. 协调节点将查询请求分发到所有相关的分片。
  3. 每个分片并行处理查询,并返回结果给协调节点。
  4. 协调节点聚合结果,并进行排序、分页等操作。
  5. 协调节点返回最终结果给客户端。

优势

  • 高可用性:通过分片和副本机制,即使部分节点故障,服务也不会中断。
  • 水平扩展:可以简单地添加更多节点来扩展存储和处理能力。
  • 高性能:并行处理查询请求,提高查询性能。
  • 容错性:副本机制确保数据的持久性和一致性。

总结

Elasticsearch通过其分布式架构,提供了一个强大、灵活且可扩展的搜索解决方案。它的设计哲学是简单性和易用性,同时隐藏了底层Lucene的复杂性。通过分片和副本机制,ES能够处理大规模数据集,并提供快速、准确的搜索结果。

相关推荐
七号练习生.c1 小时前
Git常用命令速查
大数据·git
Alex艾力的IT数字空间3 小时前
设计既保持高性能又兼顾可移植性的跨平台数据结构
数据结构·分布式·算法·微服务·中间件·架构·动态规划
谅望者3 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
不爱笑的良田3 小时前
从零开始的云原生之旅(十四):Ingress Controller 实战:Nginx Ingress 深度解析
微服务·云原生·istio
YisquareTech3 小时前
如何实现智能补货?EDI与ERP集成打造零售库存的“自动闭环”
大数据·人工智能·零售·伊士格科技·erp集成
观远数据3 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售
i***68324 小时前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
贝多财经4 小时前
千里科技报考港股上市:高度依赖吉利,AI智驾转型收入仍为零
大数据·人工智能·科技
失散134 小时前
架构师级别的电商项目——2 电商项目核心需求分析
java·分布式·微服务·架构·需求分析
怀璧其罪4 小时前
aleph-node Node upgrade instructions 节点升级说明
大数据·elasticsearch·搜索引擎