ElasticSearch底层原理解析

Elasticsearch(简称ES)是一个基于Lucene的开源、分布式、RESTful搜索引擎。它具备全文检索、结构化搜索、数据分析、复杂语言处理、地理位置处理以及对象关联分析等功能。ES的设计允许水平扩展,支持PB级别的数据,并且提供了近实时的搜索能力。

架构原理

ES的架构包括以下几个核心概念:

  1. 节点(Node):ES集群中的一个实例。
  2. 集群(Cluster):由多个节点组成,共同工作,共享数据,提供高可用性。
  3. 索引(Index):存储文档的集合,类似于数据库中的数据库。
  4. 分片(Shard):索引可以被分成多个分片,分片可以分布在集群的不同节点上,支持数据的水平扩展。
  5. 副本(Replica):每个分片可以有多个副本,提高数据的可用性和容错性。

写入数据流程

当数据写入ES时,会经过以下步骤:

  1. 客户端发送数据到任意节点,该节点成为协调节点(Coordinator Node)。
  2. 协调节点根据文档ID的哈希值,确定数据应该路由到哪个主分片。
  3. 主分片接收数据,并在内存中进行索引构建,同时将数据写入事务日志(Translog)以保证数据不丢失。
  4. 数据被刷新(Refresh)到磁盘上的Lucene索引段(Segment)中,此时数据可以被搜索到。
  5. 通过段合并(Segment Merging)优化存储和搜索性能。

检索数据流程

检索数据时,流程如下:

  1. 客户端发送搜索请求到任意节点,该节点成为协调节点。
  2. 协调节点将查询请求分发到所有相关的分片。
  3. 每个分片并行处理查询,并返回结果给协调节点。
  4. 协调节点聚合结果,并进行排序、分页等操作。
  5. 协调节点返回最终结果给客户端。

优势

  • 高可用性:通过分片和副本机制,即使部分节点故障,服务也不会中断。
  • 水平扩展:可以简单地添加更多节点来扩展存储和处理能力。
  • 高性能:并行处理查询请求,提高查询性能。
  • 容错性:副本机制确保数据的持久性和一致性。

总结

Elasticsearch通过其分布式架构,提供了一个强大、灵活且可扩展的搜索解决方案。它的设计哲学是简单性和易用性,同时隐藏了底层Lucene的复杂性。通过分片和副本机制,ES能够处理大规模数据集,并提供快速、准确的搜索结果。

相关推荐
昨夜见军贴06167 分钟前
IACheck AI审核推动质量控制记录标准化,全面保障含量测定研究合规性
大数据·运维·人工智能
不确定性确定你我15 分钟前
如何使用 Mac 作为服务器运行 Dify Workflow
大数据
Justin_1923 分钟前
K8s常见问题(4)
云原生·容器·kubernetes
说私域23 分钟前
AI智能名片S2B2C商城小程序在微商中的应用与影响
大数据·人工智能·小程序·流量运营
噎住佩奇24 分钟前
单节点 K8s 集群上部署 Longhorn
云原生·容器·kubernetes
编码如写诗26 分钟前
【信创-k8s】麒麟V11使用containerd2.1.5全离线安装k8s1.32.11+KubeSphere
云原生·容器·kubernetes
像少年啦飞驰点、28 分钟前
Java大厂面试真题:Spring Boot + Kafka + Redis 在电商场景下的实战应用
java·spring boot·redis·分布式·kafka·面试题·电商秒杀
2501_9443321629 分钟前
如何联系北京的金融业务流程外包服务商?
大数据·人工智能·金融
CHrisFC31 分钟前
环境第三方检测机构LIMS系统选型:从合规基础到效率制胜
java·大数据·人工智能
小五传输34 分钟前
探秘主流的内外网文件传输方式,解锁高效安全共享新途径
大数据·运维·安全