【无人机设计与控制】四旋翼无人机俯仰姿态保持模糊PID控制(带说明报告)

摘要

为了克服常规PID控制方法在无人机俯仰姿态控制中的不足,本研究设计了一种基于模糊自适应PID控制的控制律。通过引入模糊控制器,实现了对输入输出论域的优化选择,同时解决了模糊规则数量与控制精度之间的矛盾。仿真结果表明,所设计的控制器能够有效改善系统的动态性能,提高姿态控制的响应速度和稳定性。

理论

模糊PID控制器结合了模糊控制与传统PID控制的优点,主要原理是通过模糊逻辑自适应调整PID参数,从而在系统状态发生变化时进行快速调整,提高系统的鲁棒性和适应性。控制器由三部分组成:模糊化模块、规则推理模块和反模糊化模块。

  1. 模糊化模块:将输入误差和误差变化率转换为模糊变量。

  2. 规则推理模块:根据模糊规则库,通过模糊推理得到PID参数调整量。

  3. 反模糊化模块:将推理结果转化为具体的PID参数调整值,实时作用于控制器。

实验结果

通过Simulink对无人机的俯仰姿态控制进行了仿真测试,验证了模糊PID控制器的有效性。仿真结果显示,与传统PID控制相比,模糊PID控制器在响应时间、超调量、稳态误差等方面均表现出更好的控制效果。

  • 响应时间:控制器能够迅速响应设定值的变化,调整速度较快。

  • 超调量:控制系统的超调量明显减少,提高了系统的稳定性。

  • 稳态误差:系统能够快速消除误差,达到理想设定值,稳态性能优越。

部分代码

复制代码
% 模糊PID控制器设计
fuzzyPID = readfis('fuzzyPID.fis'); % 读取模糊控制器文件
Kp = 1; % 初始比例增益
Ki = 0.5; % 初始积分增益
Kd = 0.1; % 初始微分增益

% 控制器输入
error = input('输入误差:'); % 误差
delta_error = input('输入误差变化率:'); % 误差变化率

% 模糊推理
fuzzy_output = evalfis([error delta_error], fuzzyPID);
Kp_new = Kp + fuzzy_output(1);
Ki_new = Ki + fuzzy_output(2);
Kd_new = Kd + fuzzy_output(3);

% 更新控制器参数
fprintf('调整后的PID参数: Kp = %.2f, Ki = %.2f, Kd = %.2f\n', Kp_new, Ki_new, Kd_new);

参考文献

  1. 王辉, 李红. 模糊控制技术在飞行控制中的应用研究[J]. 现代控制工程, 2023, 45(2): 101-110.

相关推荐
柏林以东_1 分钟前
线程安全的数据集合
java·开发语言·安全
Frank_refuel2 分钟前
C++STL之set和map的接口使用介绍
数据库·c++·算法
java修仙传2 分钟前
力扣hot100:跳跃游戏||
算法·leetcode·游戏
喵喵喵小鱼2 分钟前
arcgis JavaScript api实现同时展示多个撒点气泡
开发语言·javascript·arcgis
闻缺陷则喜何志丹3 分钟前
【模拟】P9670 [ICPC 2022 Jinan R] Frozen Scoreboard|普及+
c++·算法·模拟·洛谷
fengfuyao9853 分钟前
基于MATLAB的螺旋锥齿轮齿面接触分析(TCA)实现
开发语言·matlab
永远都不秃头的程序员(互关)6 分钟前
【K-Means深度探索(十一)】K-Means VS 其他聚类算法:如何选择最合适的工具?
算法·kmeans·聚类
洛生&13 分钟前
Nested Ranges Count
算法
老鼠只爱大米13 分钟前
LeetCode经典算法面试题 #142:环形链表 II(哈希表、快慢指针等多种方法详细解析)
算法·leetcode·链表·快慢指针·floyd算法·环形链表
sweden_dove14 分钟前
《python编程练习题》中的第二部分内容(19-36)和第三部分内容(37-54)
开发语言·python