【第十八章:Sentosa_DSML社区版-机器学习之协同过滤】

【第十八章:Sentosa_DSML社区版-机器学习之协同过滤】

1.算子介绍

协同过滤是推荐系统中常用的一种方法。该算法旨在填补用户-产品关联矩阵中缺少的项。在算法中,用户和产品都是通过一组少量的潜在因素描述,这些潜在因素可以用于预测用户-产品关联矩阵中缺少的项。

2.算子类型

机器学习/推荐算子

3.算子属性说明

|---------------------|---------------|----|---------|---------|--------------------|---------------------|
| 属性 | 页面显示名称 | 选项 | 类型 | 默认值 | 约束规则 | 属性说明 |
| top_n | 推荐数量 | 必填 | Int | 10 | 大于0的整数 | 推荐数量 |
| recommend_type | 推荐类型 | 必选 | String | topUser | 单选:topUser,topItem | 推荐类型 |
| cold_start_strategy | 冷启动策略 | 必选 | String | nan | 单选:nan drop | cold_start_strategy |
| nonnegative | 是否使用非负约束 | 必选 | Boolean | 否 | 单选:true false | 是否应用非负性约束 |
| implicit_prefs | 是否使用隐式偏好 | 必选 | Boolean | 否 | 单选:true false | 是否使用隐式偏好 |
| alpha | 隐式偏好的alpha | 必填 | Double | 1.0 | >=0.0 | 隐式偏好的alpha |
| reg_param | 正则化系数 | 必填 | Double | 0.1 | >=0 | 正则化系数 |
| user_col | 用户列名 | 必填 | String | user | 单选:前继节点的所有列名 | 用户id的列名 |
| num_user_blocks | user_blocks数量 | 必填 | Int | 10 | >0 | user_blocks数量 |
| item_col | item列名 | 必填 | String | item | 单选:前继节点的所有列名 | item ids的列名参数 |
| num_item_blocks | item_blocks数量 | 必填 | Int | 10 | >0 | item_blocks数量 |
| rating_col | 评分列名 | 必填 | String | rating | 单选:前继节点的所有列名 | ratings列名参数 |
| rank | 矩阵分解的秩的参数 | 必填 | Int | 10 | >=0 | 矩阵分解的秩的参数 |
| max_iter | 最大迭代次数 | 必填 | Int | 10 | >0 | 最大迭代次数 |

4.算子使用介绍

(1)算子初始化

参考公共功能算子初始化操作

(2)算子属性设置

协同过滤算子的属性设置如图所示

协同过滤算子属性设置

(3)算子的运行

首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个协同过滤算子,后可接任意个数据处理算子,再接图表分析算子或数据写出算子(不能接评估算子),形成算子流执行。

协同过滤模型算子流

模型的运行结果如图所示

协同过滤模型的运行结果


为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

Sentosa_DSML社区版官网

Sentosa_DSML算子流开发视频

相关推荐
haiyu_y4 分钟前
Day 57 经典时序模型(1)——差分、ACF/PACF 与 AR/MA/ARMA
人工智能·深度学习·ar
duyinbi75176 分钟前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo
AI科技星10 分钟前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
hkNaruto11 分钟前
【AI】AI学习笔记:OpenAI Tools完全指南:从原理到实战入门
人工智能·笔记·学习
狮子座明仔14 分钟前
MiMo-V2-Flash 深度解读:小米 309B 开源 MoE 模型如何用 15B 激活参数吊打 671B 巨头?
人工智能·语言模型·自然语言处理
紧固件研究社15 分钟前
从标准件到复杂异形件,紧固件设备如何赋能制造升级
人工智能·制造·紧固件
木头左16 分钟前
贝叶斯深度学习在指数期权风险价值VaR估计中的实现与应用
人工智能·深度学习
反向跟单策略16 分钟前
期货反向跟单—高频换人能够提高跟单效率?
大数据·人工智能·学习·数据分析·区块链
哎吆我呸17 分钟前
Android studio 安装Claude Code GUI 插件报错无法找到Node.js解决方案
人工智能
咕噜企业分发小米18 分钟前
独立IP服务器有哪些常见的应用场景?
人工智能·阿里云·云计算