数据结构 ——— 算法的时间复杂度

目录

时间复杂度的概念

时间复杂度函数式

大O的渐进表示法的概念

大O的渐进表示法


时间复杂度的概念

在计算机科学中,算法的时间复杂度是一个函数(数学上的函数式),它定量描述了该算法的运行时间,一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有把程序放在机器上跑起来,才能知道

所以才有了时间复杂度这个分析方式,一个算法所花费的时间于其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度


时间复杂度函数式

代码演示:

复制代码
#include<stdio.h>
int main()
{
	int N = 0;
	scanf("%d", &N);

	int count = 0;

	// 循环1
	for (int i = 0; i < N; i++)
	{
		for (int j = 0; j < N; j++)
		{
			count++;
		}
	}

	// 循环2
	for (int k = 0; k < N * 2; k++)
	{
		count++;
	}

	// 循环3
	int M = 10;
	while (M--)
	{
		count++;
	}

	printf("%d\n", count);

	return 0;
}

问:以上代码中的 count++ 语句执行了多少次?

代码解析:

循环1执行了 N*N 次 ;循环2执行了 N*2 次 ;循环3执行了 10 次

**时间复杂度函数式:**F(N) = N*N + N*2 + 10

N = 10 F(N) = 130

N = 100 F(N) = 10210

N = 1000 F(N) = 1002010

代码验证:


大O的渐进表示法的概念

在实际中我们计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概的执行次数,那么就需要使用大O的渐进表示法


大O的渐进表示法

大O符号:是用于描述函数渐进行为的函数符号

推导大O阶的方法:

  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶

使用大O的渐进表示法后,以上时间复杂度函数式:F(N) = N*N + N*2 + 10 就被改写为了:O(N^2)

N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000

结论:

去掉了那些低阶项,大O的渐进表示法对结果的影响不大,且更加简洁明了的表示出了执行次数

相关推荐
我爱一条柴ya几秒前
【AI大模型】线性回归:经典算法的深度解析与实战指南
人工智能·python·算法·ai·ai编程
七灵微37 分钟前
数据结构实验习题
数据结构
三维重建-光栅投影2 小时前
VS中将cuda项目编译为DLL并调用
算法
课堂剪切板4 小时前
ch03 部分题目思路
算法
山登绝顶我为峰 3(^v^)35 小时前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
Two_brushes.6 小时前
【算法】宽度优先遍历BFS
算法·leetcode·哈希算法·宽度优先
森焱森8 小时前
水下航行器外形分类详解
c语言·单片机·算法·架构·无人机
QuantumStack10 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
写个博客10 小时前
暑假算法日记第一天
算法
绿皮的猪猪侠11 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大