leetcode刷题day32|动态规划Part01(509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)

动态规划的定义

动态规划(Dynamic Programming,简称DP),如果某一问题有很多重叠子问题,使用动态规划是最有效的。动态规划中每一个状态一定是由上一个状态推导出来的。

动态规划解题步骤

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

509. 斐波那契数

动态规划解题步骤:

1、确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2、确定递推公式

状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3、dp数组如何初始化

dp[0] = 0; dp[1] = 1;

4、确定遍历顺序

由于dp[i]= dp[i - 1] 和 dp[i - 2],所以从前到后遍历。

5、举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55

代码如下:

java 复制代码
class Solution {
    public int fib(int n) {
        if(n<=1) return n;
        int[] dp=new int[n+1];
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        } 
        return dp[n];
    }
}

70. 爬楼梯

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。到达第三层就是第一层楼梯再跨两步或者第二层楼梯再跨一步。所以到第三层楼梯的状态可以由第二层楼梯和到第一层楼梯状态推导出来。

动态规划解题步骤:

1、确定dp数组以及下标的含义

dp[i]的定义为:到达i个台阶的方法数dp[i]

2、确定递推公式

状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3、dp数组如何初始化

dp[1] = 1;dp[2] = 2;

4、确定遍历顺序

由于dp[i]= dp[i - 1] 和 dp[i - 2],所以从前到后遍历。

5、举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:1 2 3 5 8 13 21 34 55 89

代码如下:

java 复制代码
class Solution {
    public int climbStairs(int n) {
        if(n<=2) return n;
        int[] dp=new int[n+1];
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
}

746. 使用最小花费爬楼梯

根据本题的意思,跳到第0和第1阶台阶是不消耗体力的,后面1阶或2阶台阶是需要花费的。

动态规划解题步骤:

1、确定dp数组以及下标的含义

dp[i]的定义为:到达i个台阶花费的最少体力dp[i]

2、确定递推公式

状态转移方程 dp[i] =min(dp[i - 1] +cost[i-1], dp[i - 2]+cost[i-1]);

3、dp数组如何初始化

dp[0] = 0;dp[1] = 0;

4、确定遍历顺序

由于dp[i]= dp[i - 1] 和 dp[i - 2],所以从前到后遍历。

5、举例推导dp数组

cost = [1,100,1,1,1,100,1,1,100,1],我们来推导一下,当N为6的时候,dp数组应该是如下的数列:0 0 1 2 2 3

注意:cost最后一个值对应的不是顶楼,顶楼还需要在往上跳一个台阶。

代码如下:

java 复制代码
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int[] dp=new int[cost.length+1];
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.length;i++){
            dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.length];
    }
}
相关推荐
苏小瀚8 分钟前
[算法]---路径问题
数据结构·算法·leetcode
月明长歌1 小时前
【码道初阶】一道经典简单题:多数元素(LeetCode 169)|Boyer-Moore 投票算法详解
算法·leetcode·职场和发展
wadesir1 小时前
C语言模块化设计入门指南(从零开始构建清晰可维护的C程序)
c语言·开发语言·算法
t198751281 小时前
MATLAB水声信道仿真程序
开发语言·算法·matlab
CoderYanger2 小时前
动态规划算法-简单多状态dp问题:15.买卖股票的最佳时机含冷冻期
开发语言·算法·leetcode·动态规划·1024程序员节
Xの哲學2 小时前
Linux RTC深度剖析:从硬件原理到驱动实践
linux·服务器·算法·架构·边缘计算
狐572 小时前
2025-12-04-牛客刷题笔记-25_12-4-质数统计
笔记·算法
小O的算法实验室2 小时前
2024年IEEE IOTJ SCI2区TOP,基于混合算法的水下物联网多AUV未知环境全覆盖搜索方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
洲星河ZXH3 小时前
Java,比较器
java·开发语言·算法
尋有緣3 小时前
力扣1069-产品销售分析II
leetcode·oracle·数据库开发