国产化框架PaddleYOLO结合Swanlab进行作物检测

1. 项目介绍

粮食安全,作为人类生存与发展的基石,始终是全球关注的焦点。它不仅仅关乎粮食的充足供应,更涉及粮食的质量安全、营养健康以及可持续生产等多个维度。在全球化、气候变化和资源环境约束日益加剧的背景下,如何确保粮食安全,成为了各国政府和国际社会共同面临的重大挑战。随着科技的飞速发展,作物检测技术作为保障粮食安全的重要手段之一,正逐步走向精准化、智能化和高效化。作物检测不仅能够帮助农民及时了解作物生长状况,优化田间管理,提高作物产量和品质,还能在粮食收获、储存、加工等各个环节中,对粮食质量进行严格把关,确保粮食的安全性和营养价值。从传统的田间观察、人工测量到现代的遥感监测、无人机巡查,再到基于深度学习的作物检测技术,作物检测手段的不断创新,为粮食安全的保障提供了强有力的技术支撑。特别是基于深度学习的作物检测技术,通过精准管理和数据驱动决策,能够实现对作物生长环境的实时监测、病虫害的提前预警以及作物产量的精准预测,从而有效提升农业生产的效率和效益。因此,从粮食安全的角度出发,深入探索作物检测技术的创新与应用,对于提高粮食生产能力、保障粮食质量安全、促进农业可持续发展具有重要意义。本文将探讨作物检测技术在粮食安全领域的应用现状、发展趋势以及未来展望。

PaddleYOLO是由阿里云开发并开源的一个基于 PaddlePaddle 的目标检测模型,它专为实时和大规模应用设计,提供了高度优化的性能和易用性。国产化检测框架PaddleYOLO

SwanLab是一款开源、轻量级的AI实验跟踪工具,通过提供友好的API,结合超参数跟踪、指标记录、在线协作等功能,提高ML实验跟踪和协作体验。欢迎使用SwanLab

Swanhub是由极客工作室开发的一个开源模型协作分享社区。它为AI开发者提供了AI模型托管、训练记录、模型结果展示、API快速部署等功能。欢迎使用SwanHub

2. 准备部分

2.1 环境安装

安装以下3个库:

复制代码
paddle
swanlab
gradio

安装命令:

复制代码
pip install paddle swanlab gradio

2.2 下载数据集

甜菜苗数据集

2.3 下载PaddleYOLO框架

3. YOLOv8模型训练

3.1 修改配置

3.2 使用Swanlab

3.3 模型训练

复制代码
python tools/train.py -c configs/ssd/sdd_vgg16_300_240e_voc.yml --eval -o use_gpu=true

3.4 模型测试

本实验在训练后,会将训练的全部结果直接放在output中,因为output中并没有ssd_vgg16_300_240e_voc文件,因此,手动创建该文件,然后将所有结果手动导入该文件中。

复制代码
python -u tools/eval.py -c configs/ssd/ssd_vgg16_300_240e_voc.yml -o weights=output/ssd_vgg16_300_240e_voc/model_final

3.5 模型推理

在预测过程中,如果预测的不是一张图片,那么需要使用--infer_dir放入的是图片文件夹路径,--infer_img放入的是图片路径。

复制代码
python tools/infer.py -c configs/ssd/ssd_vgg16_300_240e_voc.yml --infer_dir=data/dataset --output_dir=output/ssd_result

4. YOLOv8模型训练

未完待续。。。

5. Gradio演示

未完待续。。。

6. Swanhub上传并演示demo

未完待续。。。

相关推荐
byxdaz几秒前
PyTorch处理数据--Dataset和DataLoader
人工智能·深度学习·机器学习
船长@Quant2 小时前
PyTorch量化技术教程:第四章 PyTorch在量化交易中的应用
pytorch·python·深度学习·机器学习·量化交易·ta-lib
m0_678693333 小时前
深度学习笔记19-YOLOv5-C3模块实现(Pytorch)
笔记·深度学习·yolo
自由鬼3 小时前
Google开源机器学习框架TensorFlow探索更多ViT优化
人工智能·python·深度学习·机器学习·tensorflow·机器训练
-一杯为品-3 小时前
【动手学深度学习】#6 卷积神经网络
人工智能·深度学习·cnn
点我头像干啥3 小时前
乳腺超声图像结节分割
人工智能·深度学习·opencv·计算机视觉
Uzuki4 小时前
AI可解释性 I | 对抗样本(Adversarial Sample)论文导读(持续更新)
深度学习·机器学习·可解释性
船长@Quant4 小时前
VectorBT:使用PyTorch+LSTM训练和回测股票模型 进阶二
pytorch·python·深度学习·lstm·量化策略·sklearn·量化回测
早茶和猫5 小时前
【YOLOE: Real-Time Seeing Anything】predict_visual_prompt.py视觉推理代码分析(检测版本)
yolo·目标检测·prompt·yoloe·视觉提示·开放检测
本本的小橙子5 小时前
第38周:文献阅读
人工智能·深度学习·tensorflow