[VL|Ref]UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

1. BaseInfo

Title UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces
Adress https://arxiv.org/abs/2312.15715
Journal/Time ICCV2023
Author 港大、字节
Code https://github.com/FoundationVision/UniRef
Read 20241002

2. Creative Q&A

  1. referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS) 将四个任务结合起来的大一统框架。是 UniRef 的升级版。(VOS / FSS 是 图+掩码,RVOS 是 图+掩码+文本)
  2. UniFusion 处理不同任务的模块。
  3. a unified Transformer architecture 实例级分割

3. Concrete

用分层的方式融合视觉和参考信息。

3.1. Model

Unifusion 用视觉做 Q,参考特征做 K 和 V

对参考特征做池化和回归。有 scale 、shift 和 gate 参数。

对多头交叉注意力出来的特征利用参数再残差。

使用 FlashAttention 执行跨注意力操作,当计算稠密的特征图时效率更高且内存消耗更小;受 adaLN-zero 块的启发,偏移和门的参数都是 zero-initialized 的。

3.1.1. Input

图 + 文 + 掩码

3.1.2. Backbone

Resnet 50 / Swin-L

Bert-base / RoBERT-base

3.1.3. Neck

3.1.4. Decoder

DeformableDETR(mask 的动态卷积核参数) + DynamicConv 类似 FPN 结构的,只使用了 2 3 4层的特征。最终要得到 H/4 x W/4 x C

3.1.5. Loss

set as λcls = 2.0, λcls = 2.0, λL1 = 5.0,λmask = 2.0 and λdice = 5.0, respectively

3.2. Training

3.2.1. Resource

NVIDIA A100 GPUs.

4 × 8 A100 GPUs for the objects365 pretraining and 2 × 8 GPUs for the following image-level and video-level training.

3.2.2 Dataset

(i) RIS: RefCOCO [122] consists of 142,209 language descriptions for 50,000 objects in 19,994 images. RefCOCO+ [122] has 141,564 expressions for 49,856 objects in 19,992 images. RefCOCOg [67] includes 85,474 referring expressions for 54,822 objects in 26,711 images. And we use the UMD split for RefCOCOg [67].

(ii) FSS: FSS-1000 [50] is a large-scale dataset for FSS task. It contains 10,000 images from 1,000 classes.

(iii) RVOS: Ref-Youtube-VOS [82] is a large-scale referring video object segmentation dataset which contains 3,978 videos with around 15k langauge descriptions. Ref-DAVIS17 [42] provides the referring expressions for each object in DAVIS17 [75]. It contains 90 videos in total.

(iv) VOS: Youtube-VOS1 [109] is the popular benchmark for video object segmentation. There are 474 and 507 videos in the validation set for 2018 and 2019 version, respectively. LVOS [31] is a long-term video object segmentation benchmark consisting of 220 videos.videos in LVOS have an average duration of 1.59 minutes, and the videos in Youtube-VOS last 6 seconds on average. MOSE [21] is a newly proposed dataset for evaluating VOS algorithms in complex scenes, such as occlusion and disappearance. It have 2,149 videos clips and 5,200 objects from 36 categories, with a total of 431,725 annotated masks.

3.3. Eval

Table 1: 感觉不算公平对比阿,用的 encoder 都不一样。

3.4. Ablation

UniFusion 在 SAM 中即插即用。

4. Reference

5. Additional

含附录

附件有实验具体配置。

相关推荐
程序员佳佳8 分钟前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴17 分钟前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
工业机器视觉设计和实现32 分钟前
lenet改vgg成功后,我们再改为最简单的resnet
人工智能
jiayong2338 分钟前
Spring AI Alibaba 深度解析(三):实战示例与最佳实践
java·人工智能·spring
刘某的Cloud42 分钟前
列表、元组、字典、集合-组合数据类型
linux·开发语言·python
m0_692457101 小时前
阈值分割图像
图像处理·深度学习·计算机视觉
北邮刘老师1 小时前
【智能体互联协议解析】需要“智能体名字系统”(ANS)吗?
网络·人工智能·大模型·智能体·智能体互联网
ys~~1 小时前
git学习
git·vscode·python·深度学习·学习·nlp·github
Mqh1807621 小时前
day46 Grad-CAM
python
梁辰兴1 小时前
AI解码千年甲骨文,指尖触碰的文明觉醒!
人工智能·ai·ai+·文明·甲骨文·ai赋能·梁辰兴