1. BaseInfo
Title | UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces |
Adress | https://arxiv.org/abs/2312.15715 |
Journal/Time | ICCV2023 |
Author | 港大、字节 |
Code | https://github.com/FoundationVision/UniRef |
Read | 20241002 |
2. Creative Q&A
- referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS) 将四个任务结合起来的大一统框架。是 UniRef 的升级版。(VOS / FSS 是 图+掩码,RVOS 是 图+掩码+文本)
- UniFusion 处理不同任务的模块。
- a unified Transformer architecture 实例级分割
3. Concrete
用分层的方式融合视觉和参考信息。
3.1. Model
Unifusion 用视觉做 Q,参考特征做 K 和 V
对参考特征做池化和回归。有 scale 、shift 和 gate 参数。
对多头交叉注意力出来的特征利用参数再残差。
使用 FlashAttention 执行跨注意力操作,当计算稠密的特征图时效率更高且内存消耗更小;受 adaLN-zero 块的启发,偏移和门的参数都是 zero-initialized 的。
3.1.1. Input
图 + 文 + 掩码
3.1.2. Backbone
Resnet 50 / Swin-L
Bert-base / RoBERT-base
3.1.3. Neck
3.1.4. Decoder
DeformableDETR(mask 的动态卷积核参数) + DynamicConv 类似 FPN 结构的,只使用了 2 3 4层的特征。最终要得到 H/4 x W/4 x C
3.1.5. Loss
set as λcls = 2.0, λcls = 2.0, λL1 = 5.0,λmask = 2.0 and λdice = 5.0, respectively
3.2. Training
3.2.1. Resource
NVIDIA A100 GPUs.
4 × 8 A100 GPUs for the objects365 pretraining and 2 × 8 GPUs for the following image-level and video-level training.
3.2.2 Dataset
(i) RIS: RefCOCO [122] consists of 142,209 language descriptions for 50,000 objects in 19,994 images. RefCOCO+ [122] has 141,564 expressions for 49,856 objects in 19,992 images. RefCOCOg [67] includes 85,474 referring expressions for 54,822 objects in 26,711 images. And we use the UMD split for RefCOCOg [67].
(ii) FSS: FSS-1000 [50] is a large-scale dataset for FSS task. It contains 10,000 images from 1,000 classes.
(iii) RVOS: Ref-Youtube-VOS [82] is a large-scale referring video object segmentation dataset which contains 3,978 videos with around 15k langauge descriptions. Ref-DAVIS17 [42] provides the referring expressions for each object in DAVIS17 [75]. It contains 90 videos in total.
(iv) VOS: Youtube-VOS1 [109] is the popular benchmark for video object segmentation. There are 474 and 507 videos in the validation set for 2018 and 2019 version, respectively. LVOS [31] is a long-term video object segmentation benchmark consisting of 220 videos.videos in LVOS have an average duration of 1.59 minutes, and the videos in Youtube-VOS last 6 seconds on average. MOSE [21] is a newly proposed dataset for evaluating VOS algorithms in complex scenes, such as occlusion and disappearance. It have 2,149 videos clips and 5,200 objects from 36 categories, with a total of 431,725 annotated masks.
3.3. Eval
Table 1: 感觉不算公平对比阿,用的 encoder 都不一样。
3.4. Ablation
UniFusion 在 SAM 中即插即用。
4. Reference
5. Additional
含附录
附件有实验具体配置。