[VL|Ref]UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

1. BaseInfo

Title UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces
Adress https://arxiv.org/abs/2312.15715
Journal/Time ICCV2023
Author 港大、字节
Code https://github.com/FoundationVision/UniRef
Read 20241002

2. Creative Q&A

  1. referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS) 将四个任务结合起来的大一统框架。是 UniRef 的升级版。(VOS / FSS 是 图+掩码,RVOS 是 图+掩码+文本)
  2. UniFusion 处理不同任务的模块。
  3. a unified Transformer architecture 实例级分割

3. Concrete

用分层的方式融合视觉和参考信息。

3.1. Model

Unifusion 用视觉做 Q,参考特征做 K 和 V

对参考特征做池化和回归。有 scale 、shift 和 gate 参数。

对多头交叉注意力出来的特征利用参数再残差。

使用 FlashAttention 执行跨注意力操作,当计算稠密的特征图时效率更高且内存消耗更小;受 adaLN-zero 块的启发,偏移和门的参数都是 zero-initialized 的。

3.1.1. Input

图 + 文 + 掩码

3.1.2. Backbone

Resnet 50 / Swin-L

Bert-base / RoBERT-base

3.1.3. Neck

3.1.4. Decoder

DeformableDETR(mask 的动态卷积核参数) + DynamicConv 类似 FPN 结构的,只使用了 2 3 4层的特征。最终要得到 H/4 x W/4 x C

3.1.5. Loss

set as λcls = 2.0, λcls = 2.0, λL1 = 5.0,λmask = 2.0 and λdice = 5.0, respectively

3.2. Training

3.2.1. Resource

NVIDIA A100 GPUs.

4 × 8 A100 GPUs for the objects365 pretraining and 2 × 8 GPUs for the following image-level and video-level training.

3.2.2 Dataset

(i) RIS: RefCOCO [122] consists of 142,209 language descriptions for 50,000 objects in 19,994 images. RefCOCO+ [122] has 141,564 expressions for 49,856 objects in 19,992 images. RefCOCOg [67] includes 85,474 referring expressions for 54,822 objects in 26,711 images. And we use the UMD split for RefCOCOg [67].

(ii) FSS: FSS-1000 [50] is a large-scale dataset for FSS task. It contains 10,000 images from 1,000 classes.

(iii) RVOS: Ref-Youtube-VOS [82] is a large-scale referring video object segmentation dataset which contains 3,978 videos with around 15k langauge descriptions. Ref-DAVIS17 [42] provides the referring expressions for each object in DAVIS17 [75]. It contains 90 videos in total.

(iv) VOS: Youtube-VOS1 [109] is the popular benchmark for video object segmentation. There are 474 and 507 videos in the validation set for 2018 and 2019 version, respectively. LVOS [31] is a long-term video object segmentation benchmark consisting of 220 videos.videos in LVOS have an average duration of 1.59 minutes, and the videos in Youtube-VOS last 6 seconds on average. MOSE [21] is a newly proposed dataset for evaluating VOS algorithms in complex scenes, such as occlusion and disappearance. It have 2,149 videos clips and 5,200 objects from 36 categories, with a total of 431,725 annotated masks.

3.3. Eval

Table 1: 感觉不算公平对比阿,用的 encoder 都不一样。

3.4. Ablation

UniFusion 在 SAM 中即插即用。

4. Reference

5. Additional

含附录

附件有实验具体配置。

相关推荐
哥布林学者3 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (一) 人脸识别
深度学习·ai
NAGNIP3 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP3 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
2501_944452234 小时前
字数统计 Cordova 与 OpenHarmony 混合开发实战
python
骚戴4 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维4 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
kobe_OKOK_4 小时前
tdeinge REST API 客户端
python·缓存·django
io_T_T4 小时前
Python os库 os.walk使用(详细教程、带实践)
python
亚马逊云开发者4 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai5 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang