【PyTorch】图像分割

图像分割是什么

Image Segmentation

将图像每一个像素分类

图像分割分类

  1. 超像素分割:少量超像素代替大量像素,常用于图像预处理
  2. 语义分割:逐像素分类,无法区分个体
  3. 实例分割:对个体目标进行分割
  4. 全景分割:语义分割结合实例分割

本文讨论的是语义分割

模型如何完成图像分割

计算机:3-d张量 → 计算机:3-d张量

图像分割由模型与人类配合完成

模型:将数据映射 到特征

人类:定义特征的物理意义,解决实际问题

PyTorch-Hub

PyTorch模型库,有大量模型供开发者调用 Link

1.torch.hub.load('pytorch/vision', 'deeplabv3_resnet101',pretrained=True)

复制代码
model=torch.hub.load(github, model, *args, **kwargs)
功能:加载模型
主要参数:
- github:str, 项目名,eg:pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名

2.torch.hub.list(github, force_reload=False)

3.torch.hub.help(github, model, force_reload=False)

深度学习中的图像分割模型

FCN

Fully Convolutional Networks for Semantic Segmentation

最主要贡献:

利用全卷积完成pixelwise prediction

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

DeepLab系列

V1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

主要特点:

  1. 孔洞卷积:借助孔洞卷积,增大感受野
  2. CRF:采用CRF进行mask后处理

V2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

主要特点:

  1. ASPP(Atrous Spatial Pyramid Pooling):解决多尺度问题

V3

Rethinking Atrous Convolution for Semantic Image Segmentation


主要特点:

  1. 孔洞卷积的串行
  2. ASPP的并行

V3+

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

主要特点:

deeplabv3基础上机上Encoder-Decoder思想

综述

Deep Semantic Segmentation of Natural and Medical Images: A Review

图像分割资源:

https://github.com/shawnbit/unet-family

https://github.com/yassouali/pytorch-segmentation

Unet实现人像抠图 (Portrait Matting)

数据来源:https://github.com/PetroWu/AutoPortraitMatting

未完待续......

相关推荐
ljxp12345681 分钟前
高效删除链表重复节点
python
52Hz1183 分钟前
力扣207.课程表、208.实现Trie(前缀树)
python·leetcode
骇城迷影8 分钟前
从零复现GPT-2 124M
人工智能·pytorch·python·gpt·深度学习
黑巧克力可减脂10 分钟前
商鞅变法与代码重构:AI正在如何重写软件工程的“耕战律令”
人工智能·重构·软件工程
kronos.荒10 分钟前
滑动窗口:寻找字符串中的字母异位词
开发语言·python
大傻^13 分钟前
【AI安全攻防战】提示词攻击与防护:从“奶奶漏洞“到企业级防御体系
人工智能·安全·提示词安全
大学在校生,求offer联系13 分钟前
YuFeng-XGuard-Reason安全护栏模型实测评价
人工智能·安全
Hcoco_me19 分钟前
深挖 TBD 核心进阶点:深度学习匹配(目标关联的“智能指纹”)
人工智能·深度学习·目标检测·计算机视觉·目标跟踪
Full Stack Developme22 分钟前
spring #{} 与 ${} 区别
windows·python·spring
Σίσυφος190022 分钟前
四元数 欧拉角 旋转矩阵
人工智能·算法·矩阵