【PyTorch】图像分割

图像分割是什么

Image Segmentation

将图像每一个像素分类

图像分割分类

  1. 超像素分割:少量超像素代替大量像素,常用于图像预处理
  2. 语义分割:逐像素分类,无法区分个体
  3. 实例分割:对个体目标进行分割
  4. 全景分割:语义分割结合实例分割

本文讨论的是语义分割

模型如何完成图像分割

计算机:3-d张量 → 计算机:3-d张量

图像分割由模型与人类配合完成

模型:将数据映射 到特征

人类:定义特征的物理意义,解决实际问题

PyTorch-Hub

PyTorch模型库,有大量模型供开发者调用 Link

1.torch.hub.load('pytorch/vision', 'deeplabv3_resnet101',pretrained=True)

复制代码
model=torch.hub.load(github, model, *args, **kwargs)
功能:加载模型
主要参数:
- github:str, 项目名,eg:pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名

2.torch.hub.list(github, force_reload=False)

3.torch.hub.help(github, model, force_reload=False)

深度学习中的图像分割模型

FCN

Fully Convolutional Networks for Semantic Segmentation

最主要贡献:

利用全卷积完成pixelwise prediction

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

DeepLab系列

V1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

主要特点:

  1. 孔洞卷积:借助孔洞卷积,增大感受野
  2. CRF:采用CRF进行mask后处理

V2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

主要特点:

  1. ASPP(Atrous Spatial Pyramid Pooling):解决多尺度问题

V3

Rethinking Atrous Convolution for Semantic Image Segmentation


主要特点:

  1. 孔洞卷积的串行
  2. ASPP的并行

V3+

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

主要特点:

deeplabv3基础上机上Encoder-Decoder思想

综述

Deep Semantic Segmentation of Natural and Medical Images: A Review

图像分割资源:

https://github.com/shawnbit/unet-family

https://github.com/yassouali/pytorch-segmentation

Unet实现人像抠图 (Portrait Matting)

数据来源:https://github.com/PetroWu/AutoPortraitMatting

未完待续......

相关推荐
sunfove12 分钟前
Python 面向对象编程:从过程式思维到对象模型
linux·开发语言·python
Elastic 中国社区官方博客17 分钟前
使用 Elasticsearch 管理 agentic 记忆
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
升职佳兴18 分钟前
从 0 到 1:我做了一个提升 AI 对话效率的浏览器插件(架构+实现+发布)
人工智能·架构
linmoo198630 分钟前
Langchain4j 系列之二十二 - Embedding Models
人工智能·langchain·embedding·嵌入模型·langchain4j
三不原则32 分钟前
实战:基于 GitOps 实现 AI 应用的自动化部署与发布
运维·人工智能·自动化
沈浩(种子思维作者)40 分钟前
什么才叫量子物理学?什么是真正量子计算?
人工智能·python·flask·量子计算
张彦峰ZYF41 分钟前
AI 编码工具全景分析与选型决策指南——从「代码补全」到「工程级智能体」的范式跃迁
人工智能·ai 编码工具·选型决策·代码补全·工程级智能体·ai 尚不等同于工程自治
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结(含事件驱动协同逻辑)
java·人工智能·spring boot·微服务·架构·事件驱动·领域驱动
敏叔V5871 小时前
CAMEL-AI框架揭秘:如何通过角色扮演激发大模型复杂推理与规划能力
人工智能
悟纤1 小时前
Suno 摇滚歌曲创作提示词全解析 | Suno高级篇 | 第21篇
人工智能·suno·suno ai·suno api·ai music