【PyTorch】图像分割

图像分割是什么

Image Segmentation

将图像每一个像素分类

图像分割分类

  1. 超像素分割:少量超像素代替大量像素,常用于图像预处理
  2. 语义分割:逐像素分类,无法区分个体
  3. 实例分割:对个体目标进行分割
  4. 全景分割:语义分割结合实例分割

本文讨论的是语义分割

模型如何完成图像分割

计算机:3-d张量 → 计算机:3-d张量

图像分割由模型与人类配合完成

模型:将数据映射 到特征

人类:定义特征的物理意义,解决实际问题

PyTorch-Hub

PyTorch模型库,有大量模型供开发者调用 Link

1.torch.hub.load('pytorch/vision', 'deeplabv3_resnet101',pretrained=True)

复制代码
model=torch.hub.load(github, model, *args, **kwargs)
功能:加载模型
主要参数:
- github:str, 项目名,eg:pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名

2.torch.hub.list(github, force_reload=False)

3.torch.hub.help(github, model, force_reload=False)

深度学习中的图像分割模型

FCN

Fully Convolutional Networks for Semantic Segmentation

最主要贡献:

利用全卷积完成pixelwise prediction

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

DeepLab系列

V1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

主要特点:

  1. 孔洞卷积:借助孔洞卷积,增大感受野
  2. CRF:采用CRF进行mask后处理

V2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

主要特点:

  1. ASPP(Atrous Spatial Pyramid Pooling):解决多尺度问题

V3

Rethinking Atrous Convolution for Semantic Image Segmentation


主要特点:

  1. 孔洞卷积的串行
  2. ASPP的并行

V3+

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

主要特点:

deeplabv3基础上机上Encoder-Decoder思想

综述

Deep Semantic Segmentation of Natural and Medical Images: A Review

图像分割资源:

https://github.com/shawnbit/unet-family

https://github.com/yassouali/pytorch-segmentation

Unet实现人像抠图 (Portrait Matting)

数据来源:https://github.com/PetroWu/AutoPortraitMatting

未完待续......

相关推荐
谷粒.12 小时前
测试数据管理难题的7种破解方案
运维·开发语言·网络·人工智能·python
一RTOS一12 小时前
“智”赋百业 | 东土科技:为工业人工智能铸造“中国根系”
人工智能·科技
周周爱喝粥呀12 小时前
向量检索:AI 是如何进行语义匹配的?
人工智能
深蓝电商API13 小时前
爬虫+大模型结合:让AI自动写XPath和清洗规则
人工智能·爬虫
寒山李白13 小时前
关于Python版本与supervisor版本的兼容性
windows·python·supervisord
WebGoC开发者13 小时前
【备赛指导】佛山市青少年科技创新大赛暨佛山市青少年人工智能科创节 智趣AI竞技赛 流程详解
人工智能·经验分享·科技·ai·青少年科技竞赛
梨落秋霜13 小时前
Python入门篇【基础语法】
开发语言·python
大千AI助手13 小时前
模糊集合理论:从Zadeh奠基到现代智能系统融合
人工智能·机器学习·集合·模糊理论·大千ai助手·模糊集合·fuzzysets
数据门徒13 小时前
《人工智能现代方法(第4版)》 第7章 逻辑智能体 学习笔记
人工智能·笔记·学习
生成论实验室13 小时前
周林东的生成论入门十讲 · 第八讲 生成的世界——物理学与生物学新视角
人工智能·科技·神经网络·信息与通信·几何学