Leecode热题100-295.数据流中的中位数

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。

  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。

  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

复制代码
输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]

解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

提示:

  • -105 <= num <= 105
  • 在调用 findMedian 之前,数据结构中至少有一个元素
  • 最多 5 * 104 次调用 addNumfindMedian

本题我用的是双堆的解法,一个小根堆,一个大根堆,堆的特性要了解,默认情况下顶上是小的,越往下越大(小顶堆)

java 复制代码
class MedianFinder {
    /**先定义两个堆,一个小根(大顶)堆,用来放小的数,一个大跟堆(小顶)用来放大的数
    记住堆默认是小顶堆(大根堆)*/
    PriorityQueue<Integer> minHeap;
    PriorityQueue<Integer> maxHeap;

    public MedianFinder() {
        /**初始化两个堆 */
        minHeap = new PriorityQueue<>((a,b)->b-a);
        maxHeap = new PriorityQueue<>();
    }
    
    public void addNum(int num) {
        /**如果加入的数比maxHeap的顶(这个堆里最大的数)大,就放入小顶堆
        其他情况放入小顶堆*/
        if(minHeap.isEmpty() || num <= minHeap.peek()) {
            minHeap.offer(num);
            /**为了平衡 */
            if(minHeap.size() > maxHeap.size() + 1) {
                maxHeap.offer(minHeap.poll());
            }
        } else {
            maxHeap.offer(num);
            /**为了平衡 */
            if(maxHeap.size() > minHeap.size() + 1) {
                minHeap.offer(maxHeap.poll());
            }
        }
    }
    
    public double findMedian() {
        /**谁的元素多弹出谁的顶 */
        if(maxHeap.size() > minHeap.size()) {
            return maxHeap.peek();
        } else if(maxHeap.size() < minHeap.size()) {
            return minHeap.peek();
        } else {
            /**如果元素一样,弹出他们俩的顶的平均数 */
            return (double)(maxHeap.peek() + minHeap.peek())/2;
        }
    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder obj = new MedianFinder();
 * obj.addNum(num);
 * double param_2 = obj.findMedian();
 */
相关推荐
这周也會开心1 分钟前
云服务器安装JDK、Tomcat、MySQL
java·服务器·tomcat
hrrrrb1 小时前
【Spring Security】Spring Security 概念
java·数据库·spring
小信丶1 小时前
Spring 中解决 “Could not autowire. There is more than one bean of type“ 错误
java·spring
sdgsdgdsgc1 小时前
Next.js企业级应用开发:SSR、ISR与性能监控方案
开发语言·前端·javascript
哲此一生9841 小时前
搭建Vue3工程(去除不必要的文件)
前端·javascript·vue.js
周杰伦_Jay2 小时前
【Java虚拟机(JVM)全面解析】从原理到面试实战、JVM故障处理、类加载、内存区域、垃圾回收
java·jvm
黑云压城After4 小时前
H5使用环信实现视频或语音通话
前端·javascript·vue.js
rit84324995 小时前
基于MATLAB的模糊图像复原
开发语言·matlab
fie88895 小时前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
未来之窗软件服务5 小时前
自己写算法(九)网页数字动画函数——东方仙盟化神期
前端·javascript·算法·仙盟创梦ide·东方仙盟·东方仙盟算法