机器学习可视化教程——混淆矩阵与回归图

机器学习可视化教程------混淆矩阵与回归图

关于作者

作者:小白熊

作者简介:精通python、matlab、c#语言,擅长机器学习,深度学习,机器视觉,目标检测,图像分类,姿态识别,语义分割,路径规划,智能优化算法,数据分析,各类创新融合等等。

联系邮箱 :xbx3144@163.com

科研辅导、知识付费答疑、个性化定制以及其他合作需求请联系作者~

前言

在机器学习项目中,数据的可视化是评估模型表现的关键步骤。通过可视化,我们可以直观地看出模型的预测效果、数据分布和误差。本文将介绍如何使用`matplotlib`和`seaborn`,来绘制回归图(用于回归任务)和混淆矩阵(用于分类任务)。

回归任务------回归图(Regression Plot)

回归分析是机器学习中用于预测数值型目标变量的一种常见方法。回归图通常用于展示模型预测值与真实值之间的关系。我们可以使用seaborn库来绘制回归图。

示例代码

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

warnings.filterwarnings("ignore")  # 忽略警告

# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 假设真实值为y_true,预测值为y_pred

# 绘制回归图
plt.figure(figsize=(10,6))
sns.regplot(x=y_true, y=y_pred, scatter_kws={'s':10}, line_kws={'color':'red'})
plt.xlabel("真实值")
plt.ylabel("预测值")
plt.title("回归图")
plt.show()

示例图

分类任务------混淆矩阵(Confusion Matrix)

混淆矩阵常用于分类任务,展示分类器的性能表现。它能够显示模型正确分类的样本数与错误分类的样本数,帮助我们更好地理解模型的预测情况。

示例代码

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

warnings.filterwarnings("ignore")  # 忽略警告

# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 假设真实值为y_true,预测值为y_pred

# 计算混淆矩阵
cm = confusion_matrix(y_true, y_pred)

# 绘制混淆矩阵,xticklabels和yticklabels是类别名称,需要根据实际情况修改
plt.figure(figsize=(8,6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel("预测值")
plt.ylabel("真实值")
plt.title("混淆矩阵")
plt.show()

示例图

结束语

回归图和混淆矩阵是分析机器学习模型性能的重要工具。回归图帮助我们评估模型的预测准确度,而混淆矩阵则能深入了解分类模型的分类错误类型。通过这些可视化,我们能够快速发现模型的潜在问题,进而改进模型的表现。

使用matplotlibseaborn等工具,你可以轻松地创建这些图表并嵌入到你的机器学习项目中,帮助更好地理解和解释你的模型结果。

相关推荐
寻道码路几秒前
探秘 Docling:多格式文档解析转换大揭秘,赋能 AI 应用新生态
人工智能·aigc·ai编程
健忘的派大星1 分钟前
【AI大模型】根据官方案例使用milvus向量数据库打造问答RAG系统
人工智能·ai·语言模型·llm·milvus·agi·rag
黑客-雨2 分钟前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
是Dream呀2 分钟前
引领AI发展潮流:打造大模型时代的安全与可信——CCF-CV企业交流会走进合合信息会议回顾
人工智能·安全·生成式ai
日出等日落4 分钟前
小白也能轻松上手的GPT-SoVITS AI语音克隆神器一键部署教程
人工智能·gpt
孤独且没人爱的纸鹤16 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
后端研发Marion18 分钟前
【AI编辑器】字节跳动推出AI IDE——Trae,专为中文开发者深度定制
人工智能·ai编程·ai程序员·trae·ai编辑器
l1x1n019 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
木与长清36 分钟前
利用MetaNeighbor验证重复性和跨物种分群
矩阵·数据分析·r语言
Tiger Z41 分钟前
R 语言科研绘图 --- 散点图-汇总
人工智能·程序人生·r语言·贴图