LSTM时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测

本文内容:Python实现LSTM长短期记忆神经网络时间序列预测,使用的数据集为 AirPassengers

目录

数据集简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四

数据集简介

AirPassengers 数据集的来源可以追溯到经典的统计和时间序列分析文献。原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入,这本书在时间序列分析领域非常著名

1.训练结果

2.步骤一

安装darts库:

复制代码
pip install darts

3.步骤二

部分代码如下:

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import shutil
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm_notebook as tqdm
import matplotlib.pyplot as plt

from darts import TimeSeries
from darts.dataprocessing.transformers import Scaler
from darts.models import RNNModel, ExponentialSmoothing, BlockRNNModel
from darts.metrics import mape, mae, mse, rmse
from darts.utils.statistics import check_seasonality, plot_acf
from darts.datasets import AirPassengersDataset, SunspotsDataset
from darts.utils.timeseries_generation import datetime_attribute_timeseries

import warnings

warnings.filterwarnings("ignore")
import logging

logging.disable(logging.CRITICAL)

####################数据准备##########################
# Read data:
series = AirPassengersDataset().load()  #原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入

# Create training and validation sets:
train, val = series.split_after(pd.Timestamp("19590101")) ##可以填写具体的日期,也可以填写比例

# Normalize the time series (note: we avoid fitting the transformer on the validation set)
transformer = Scaler()
train_transformed = transformer.fit_transform(train)
val_transformed = transformer.transform(val)
series_transformed = transformer.transform(series)

# create month and year covariate series
year_series = datetime_attribute_timeseries(
    pd.date_range(start=series.start_time(), freq=series.freq_str, periods=1000),
    attribute="year",
    one_hot=False,
)
year_series = Scaler().fit_transform(year_series)
month_series = datetime_attribute_timeseries(
    year_series, attribute="month", one_hot=True
)
covariates = year_series.stack(month_series)
cov_train, cov_val = covariates.split_after(pd.Timestamp("19590101"))

####################构建模型##########################
my_model = RNNModel(
    model="LSTM",
    hidden_dim=20,
    dropout=0,
    batch_size=16,
    n_epochs=300,
    optimizer_kwargs={"lr": 1e-3},
    model_name="Air_RNN",
    log_tensorboard=True,
    random_state=42,
    training_length=20,
    input_chunk_length=14,
    force_reset=True,
    save_checkpoints=True,
)


my_model.fit(
    train_transformed,
    future_covariates=covariates,
    val_series=val_transformed,
    val_future_covariates=covariates,
    verbose=True,
)

完整代码下载地址:下载地址

相关推荐
环己酮13 分钟前
py数据科学学习笔记day4-空间数据统计分析与可视化(2)
python
q***482539 分钟前
基于python语言的网页设计(手把手教你设计一个个人博客网站)
开发语言·python
qq_22589174661 小时前
基于Python+Django餐饮评论大数据分析与智能推荐系统 毕业论文
开发语言·后端·python·信息可视化·数据分析·django
FreakStudio1 小时前
串口协议解析实战:以 R60ABD1 雷达为例,详解 MicroPython 驱动中数据与业务逻辑的分离设计
python·单片机·pycharm·嵌入式·面向对象·硬件·电子diy
南山安1 小时前
让 LLM 与外界对话:使用 Function Calling 实现天气查询工具
人工智能·后端·python
极客BIM工作室2 小时前
LSTM门控结构:乘法设计的必然性分析
rnn·深度学习·lstm
用户12039112947262 小时前
打破信息壁垒:手把手教你实现DeepSeek大模型的天气查询功能
python·openai
道一云黑板报2 小时前
大规模低代码系统推荐:知识图谱与 GNN 的性能优化策略
深度学习·神经网络·低代码·性能优化·知识图谱·推荐算法
鱼骨不是鱼翅2 小时前
力扣hot100----1day
python·算法·leetcode·职场和发展
2501_941236213 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python