LSTM时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测

本文内容:Python实现LSTM长短期记忆神经网络时间序列预测,使用的数据集为 AirPassengers

目录

数据集简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四

数据集简介

AirPassengers 数据集的来源可以追溯到经典的统计和时间序列分析文献。原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入,这本书在时间序列分析领域非常著名

1.训练结果

2.步骤一

安装darts库:

复制代码
pip install darts

3.步骤二

部分代码如下:

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import shutil
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm_notebook as tqdm
import matplotlib.pyplot as plt

from darts import TimeSeries
from darts.dataprocessing.transformers import Scaler
from darts.models import RNNModel, ExponentialSmoothing, BlockRNNModel
from darts.metrics import mape, mae, mse, rmse
from darts.utils.statistics import check_seasonality, plot_acf
from darts.datasets import AirPassengersDataset, SunspotsDataset
from darts.utils.timeseries_generation import datetime_attribute_timeseries

import warnings

warnings.filterwarnings("ignore")
import logging

logging.disable(logging.CRITICAL)

####################数据准备##########################
# Read data:
series = AirPassengersDataset().load()  #原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入

# Create training and validation sets:
train, val = series.split_after(pd.Timestamp("19590101")) ##可以填写具体的日期,也可以填写比例

# Normalize the time series (note: we avoid fitting the transformer on the validation set)
transformer = Scaler()
train_transformed = transformer.fit_transform(train)
val_transformed = transformer.transform(val)
series_transformed = transformer.transform(series)

# create month and year covariate series
year_series = datetime_attribute_timeseries(
    pd.date_range(start=series.start_time(), freq=series.freq_str, periods=1000),
    attribute="year",
    one_hot=False,
)
year_series = Scaler().fit_transform(year_series)
month_series = datetime_attribute_timeseries(
    year_series, attribute="month", one_hot=True
)
covariates = year_series.stack(month_series)
cov_train, cov_val = covariates.split_after(pd.Timestamp("19590101"))

####################构建模型##########################
my_model = RNNModel(
    model="LSTM",
    hidden_dim=20,
    dropout=0,
    batch_size=16,
    n_epochs=300,
    optimizer_kwargs={"lr": 1e-3},
    model_name="Air_RNN",
    log_tensorboard=True,
    random_state=42,
    training_length=20,
    input_chunk_length=14,
    force_reset=True,
    save_checkpoints=True,
)


my_model.fit(
    train_transformed,
    future_covariates=covariates,
    val_series=val_transformed,
    val_future_covariates=covariates,
    verbose=True,
)

完整代码下载地址:下载地址

相关推荐
木头左2 小时前
逻辑回归的Python实现与优化
python·算法·逻辑回归
quant_19863 小时前
R语言如何接入实时行情接口
开发语言·经验分享·笔记·python·websocket·金融·r语言
小牛头#4 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
失败又激情的man8 小时前
python之requests库解析
开发语言·爬虫·python
打酱油的;8 小时前
爬虫-request处理get
爬虫·python·django
X Y O8 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
kngines8 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
网安INF9 小时前
深度学习中批标准化与神经网络调优
人工智能·深度学习·神经网络·机器学习
用什么都重名10 小时前
MinerU:高效智能PDF文档解析工具完全指南
人工智能·python·pdf·mineru·makedown
倔强青铜三10 小时前
苦练Python第4天:Python变量与数据类型入门
前端·后端·python