LSTM时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测

本文内容:Python实现LSTM长短期记忆神经网络时间序列预测,使用的数据集为 AirPassengers

目录

数据集简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四

数据集简介

AirPassengers 数据集的来源可以追溯到经典的统计和时间序列分析文献。原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入,这本书在时间序列分析领域非常著名

1.训练结果

2.步骤一

安装darts库:

复制代码
pip install darts

3.步骤二

部分代码如下:

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import shutil
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm_notebook as tqdm
import matplotlib.pyplot as plt

from darts import TimeSeries
from darts.dataprocessing.transformers import Scaler
from darts.models import RNNModel, ExponentialSmoothing, BlockRNNModel
from darts.metrics import mape, mae, mse, rmse
from darts.utils.statistics import check_seasonality, plot_acf
from darts.datasets import AirPassengersDataset, SunspotsDataset
from darts.utils.timeseries_generation import datetime_attribute_timeseries

import warnings

warnings.filterwarnings("ignore")
import logging

logging.disable(logging.CRITICAL)

####################数据准备##########################
# Read data:
series = AirPassengersDataset().load()  #原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入

# Create training and validation sets:
train, val = series.split_after(pd.Timestamp("19590101")) ##可以填写具体的日期,也可以填写比例

# Normalize the time series (note: we avoid fitting the transformer on the validation set)
transformer = Scaler()
train_transformed = transformer.fit_transform(train)
val_transformed = transformer.transform(val)
series_transformed = transformer.transform(series)

# create month and year covariate series
year_series = datetime_attribute_timeseries(
    pd.date_range(start=series.start_time(), freq=series.freq_str, periods=1000),
    attribute="year",
    one_hot=False,
)
year_series = Scaler().fit_transform(year_series)
month_series = datetime_attribute_timeseries(
    year_series, attribute="month", one_hot=True
)
covariates = year_series.stack(month_series)
cov_train, cov_val = covariates.split_after(pd.Timestamp("19590101"))

####################构建模型##########################
my_model = RNNModel(
    model="LSTM",
    hidden_dim=20,
    dropout=0,
    batch_size=16,
    n_epochs=300,
    optimizer_kwargs={"lr": 1e-3},
    model_name="Air_RNN",
    log_tensorboard=True,
    random_state=42,
    training_length=20,
    input_chunk_length=14,
    force_reset=True,
    save_checkpoints=True,
)


my_model.fit(
    train_transformed,
    future_covariates=covariates,
    val_series=val_transformed,
    val_future_covariates=covariates,
    verbose=True,
)

完整代码下载地址:下载地址

相关推荐
重启的码农18 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农19 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机20 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶20 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
Moshow郑锴2 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归
HAPPY酷2 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
传奇开心果编程3 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
王者鳜錸4 小时前
PYTHON让繁琐的工作自动化-PYTHON基础
python·microsoft·自动化
key_Go4 小时前
7.Ansible自动化之-实施任务控制
python·ansible·numpy
wyiyiyi12 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask