LSTM时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测

本文内容:Python实现LSTM长短期记忆神经网络时间序列预测,使用的数据集为 AirPassengers

目录

数据集简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四

数据集简介

AirPassengers 数据集的来源可以追溯到经典的统计和时间序列分析文献。原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入,这本书在时间序列分析领域非常著名

1.训练结果

2.步骤一

安装darts库:

复制代码
pip install darts

3.步骤二

部分代码如下:

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import shutil
from sklearn.preprocessing import MinMaxScaler
from tqdm import tqdm_notebook as tqdm
import matplotlib.pyplot as plt

from darts import TimeSeries
from darts.dataprocessing.transformers import Scaler
from darts.models import RNNModel, ExponentialSmoothing, BlockRNNModel
from darts.metrics import mape, mae, mse, rmse
from darts.utils.statistics import check_seasonality, plot_acf
from darts.datasets import AirPassengersDataset, SunspotsDataset
from darts.utils.timeseries_generation import datetime_attribute_timeseries

import warnings

warnings.filterwarnings("ignore")
import logging

logging.disable(logging.CRITICAL)

####################数据准备##########################
# Read data:
series = AirPassengersDataset().load()  #原始数据集由 Box, Jenkins 和 Reinsel 在他们的书籍《Time Series Analysis: Forecasting and Control》中引入

# Create training and validation sets:
train, val = series.split_after(pd.Timestamp("19590101")) ##可以填写具体的日期,也可以填写比例

# Normalize the time series (note: we avoid fitting the transformer on the validation set)
transformer = Scaler()
train_transformed = transformer.fit_transform(train)
val_transformed = transformer.transform(val)
series_transformed = transformer.transform(series)

# create month and year covariate series
year_series = datetime_attribute_timeseries(
    pd.date_range(start=series.start_time(), freq=series.freq_str, periods=1000),
    attribute="year",
    one_hot=False,
)
year_series = Scaler().fit_transform(year_series)
month_series = datetime_attribute_timeseries(
    year_series, attribute="month", one_hot=True
)
covariates = year_series.stack(month_series)
cov_train, cov_val = covariates.split_after(pd.Timestamp("19590101"))

####################构建模型##########################
my_model = RNNModel(
    model="LSTM",
    hidden_dim=20,
    dropout=0,
    batch_size=16,
    n_epochs=300,
    optimizer_kwargs={"lr": 1e-3},
    model_name="Air_RNN",
    log_tensorboard=True,
    random_state=42,
    training_length=20,
    input_chunk_length=14,
    force_reset=True,
    save_checkpoints=True,
)


my_model.fit(
    train_transformed,
    future_covariates=covariates,
    val_series=val_transformed,
    val_future_covariates=covariates,
    verbose=True,
)

完整代码下载地址:下载地址

相关推荐
喵手14 分钟前
Python爬虫实战:基于ETag/Last-Modified的智能条件请求与流量优化!
爬虫·python·爬虫实战·零基础python爬虫教学·etag/last·modified·智能条件请求与流量优化
MediaTea15 分钟前
Python:比较协议
运维·服务器·开发语言·网络·python
sg_knight1 小时前
对象池模式(Object Pool)
python·设计模式·object pool·对象池模式
240291003371 小时前
自编码器(AE)与变分自编码器(VAE)-- 认识篇
python·神经网络·机器学习
郝学胜-神的一滴1 小时前
Python中的“==“与“is“:深入解析与Vibe Coding时代的优化实践
开发语言·数据结构·c++·python·算法
一个处女座的程序猿O(∩_∩)O1 小时前
Python多重继承详解
开发语言·python
啊阿狸不会拉杆2 小时前
《计算机视觉:模型、学习和推理》第 6 章-视觉学习和推理
人工智能·学习·算法·机器学习·计算机视觉·生成模型·判别模型
Loo国昌2 小时前
【AI应用开发实战】04_混合检索器:BM25+向量+可靠度融合实战
人工智能·后端·python·自然语言处理
belldeep2 小时前
python:用 Flask 3 , mistune 2 实现指定目录下 Md 文件的渲染
python·flask·markdown·mistune