【进阶OpenCV】 (6)--指纹识别

文章目录

  • 指纹识别
    • [1. 计算指纹间匹配点的个数](#1. 计算指纹间匹配点的个数)
    • [2. 获取指纹编号](#2. 获取指纹编号)
    • [3. 获取对应姓名](#3. 获取对应姓名)
    • [4. 代码实现](#4. 代码实现)
  • 总结

指纹识别

假设,现在我们有一个小的指纹库,此时,有一个指纹图片需要我们识别是不是指纹库中某一个人的。如果是,是谁的呢?

本篇,我们就来完成这个小项目,通过指纹图片,找出是库中哪个人的。

  • 已有指纹库
  • 对应人名
python 复制代码
nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',
          5:'钱八',6:'铁栓',7:'铁柱',8:'金川',9:'银川',9999:"无此人"}
  • 源图像

1. 计算指纹间匹配点的个数

首先,如果要对指纹进行匹配的话,我们需要计算两个指纹图片的特征匹配点个数,特征相似度越高(特征匹配点数量多),两个指纹为同一个人的概率越大。

python 复制代码
"""-----计算两个指纹间匹配点的个数-----"""
def getNum(src,model):
    img1 = cv2.imread(src)
    img2 = cv2.imread(model)
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create() # orb_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1,des1 = sift.detectAndCompute(img1,None)
    # 检测关键点和计算描述符  模板图像
    kp2, des2 = sift.detectAndCompute(img2, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用K近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1,des2,k=2)
    ok = []
    for m,n in matches:
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    return num

2. 获取指纹编号

对于我们需要查找的指纹对象,我们自然是在指纹库中匹配到之后,获取它的信息,得到它的编号,从而得到它的信息。

python 复制代码
"""-----获取指纹编号-----"""
def getID(src,database):
    max = 0
    for file in os.listdir(database):
        model = os.path.join(database,file)
        num = getNum(src,model)
        print("文件名:",file,"距离:",num)
        if num > max:
            max = num
            name = file
    ID = name[0]
    if max < 100: # src图片不一定是库里的指纹
        ID = 9999
    return ID

通过循环遍历指纹库中的每一张图片,计算每张图片与源图像的特征点数量,取出数量最多的图片,确定它是匹配成功的对象(当然最多的数量至少要超过一百个,否则没有)。

3. 获取对应姓名

python 复制代码
def getName(ID):
    nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',
              5:'钱八',6:'铁栓',7:'铁柱',8:'金川',9:'银川',9999:"无此人"}
    name = nameID.get(int(ID))
    return name

4. 代码实现

python 复制代码
if __name__ == '__main__':
    src = 'src.bmp'
    database = "database"
    ID = getID(src,database)
    name = getName(ID)
    print("识别结果为:",name)
-------------------
识别结果为: 铁柱

总结

本篇介绍了,如何将源图像指纹同指纹库中的指纹进行匹配,并得到的对应指纹的信息。

相关推荐
泰迪智能科技1 分钟前
分享|联合编写教材入选第二批“十四五”职业教育国家规划教材名单
大数据·人工智能
模型时代12 分钟前
热力学计算技术或将大幅降低AI图像生成能耗
人工智能
企业老板ai培训13 分钟前
从九尾狐AI实战案例拆解AI短视频获客的架构设计:智能矩阵如何提升企业效率?
人工智能
lixzest17 分钟前
目标检测算法应用工程师 面试高频题 + 标准答案
python·yolo·目标检测·计算机视觉
龙腾AI白云23 分钟前
知识图谱如何在制造业实际落地应用
人工智能·知识图谱
力学与人工智能24 分钟前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
娟宝宝萌萌哒33 分钟前
智能体设计模式重点
人工智能·设计模式
乾元1 小时前
绕过艺术:使用 GANs 对抗 Web 防火墙(WAF)
前端·网络·人工智能·深度学习·安全·架构
蝈蝈tju1 小时前
Vibe Coding 正确姿势: 先会指挥, 再让AI干
人工智能·经验分享·ai
想你依然心痛1 小时前
AI 换脸新纪元:Facefusion 人脸融合实战探索
人工智能·换脸·facefusion·人脸融合