【进阶OpenCV】 (6)--指纹识别

文章目录

  • 指纹识别
    • [1. 计算指纹间匹配点的个数](#1. 计算指纹间匹配点的个数)
    • [2. 获取指纹编号](#2. 获取指纹编号)
    • [3. 获取对应姓名](#3. 获取对应姓名)
    • [4. 代码实现](#4. 代码实现)
  • 总结

指纹识别

假设,现在我们有一个小的指纹库,此时,有一个指纹图片需要我们识别是不是指纹库中某一个人的。如果是,是谁的呢?

本篇,我们就来完成这个小项目,通过指纹图片,找出是库中哪个人的。

  • 已有指纹库
  • 对应人名
python 复制代码
nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',
          5:'钱八',6:'铁栓',7:'铁柱',8:'金川',9:'银川',9999:"无此人"}
  • 源图像

1. 计算指纹间匹配点的个数

首先,如果要对指纹进行匹配的话,我们需要计算两个指纹图片的特征匹配点个数,特征相似度越高(特征匹配点数量多),两个指纹为同一个人的概率越大。

python 复制代码
"""-----计算两个指纹间匹配点的个数-----"""
def getNum(src,model):
    img1 = cv2.imread(src)
    img2 = cv2.imread(model)
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create() # orb_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1,des1 = sift.detectAndCompute(img1,None)
    # 检测关键点和计算描述符  模板图像
    kp2, des2 = sift.detectAndCompute(img2, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用K近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1,des2,k=2)
    ok = []
    for m,n in matches:
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    return num

2. 获取指纹编号

对于我们需要查找的指纹对象,我们自然是在指纹库中匹配到之后,获取它的信息,得到它的编号,从而得到它的信息。

python 复制代码
"""-----获取指纹编号-----"""
def getID(src,database):
    max = 0
    for file in os.listdir(database):
        model = os.path.join(database,file)
        num = getNum(src,model)
        print("文件名:",file,"距离:",num)
        if num > max:
            max = num
            name = file
    ID = name[0]
    if max < 100: # src图片不一定是库里的指纹
        ID = 9999
    return ID

通过循环遍历指纹库中的每一张图片,计算每张图片与源图像的特征点数量,取出数量最多的图片,确定它是匹配成功的对象(当然最多的数量至少要超过一百个,否则没有)。

3. 获取对应姓名

python 复制代码
def getName(ID):
    nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',
              5:'钱八',6:'铁栓',7:'铁柱',8:'金川',9:'银川',9999:"无此人"}
    name = nameID.get(int(ID))
    return name

4. 代码实现

python 复制代码
if __name__ == '__main__':
    src = 'src.bmp'
    database = "database"
    ID = getID(src,database)
    name = getName(ID)
    print("识别结果为:",name)
-------------------
识别结果为: 铁柱

总结

本篇介绍了,如何将源图像指纹同指纹库中的指纹进行匹配,并得到的对应指纹的信息。

相关推荐
Tiny番茄19 分钟前
Multimodal models —— CLIP,LLava,QWen
人工智能
Wnq1007235 分钟前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
无心水1 小时前
【程序员AI入门:模型】19.开源模型工程化全攻略:从选型部署到高效集成,LangChain与One-API双剑合璧
人工智能·langchain·开源·ai入门·程序员ai开发入门·程序员的 ai 开发第一课·程序员ai入门
有梦想的攻城狮1 小时前
大语言模型与多模态模型比较
人工智能·语言模型·自然语言处理·llm·大语言模型
九章云极AladdinEdu2 小时前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex2 小时前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_754918412 小时前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉
羽星_s3 小时前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~3 小时前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
浊酒南街3 小时前
TensorFlow之微分求导
人工智能·python·tensorflow