代码随想录算法训练营第38天 | 第九章动态规划 part11

文章目录

  • [第九章 动态规划 Part 11](#第九章 动态规划 Part 11)
    • [1143. 最长公共子序列](#1143. 最长公共子序列)
    • [1035. 不相交的线](#1035. 不相交的线)
    • [53. 最大子序和](#53. 最大子序和)
    • [392. 判断子序列](#392. 判断子序列)

第九章 动态规划 Part 11

1143. 最长公共子序列

体会一下本题和 718. 最长重复子数组 的区别。
视频讲解B站视频
题解链接最长公共子序列题解

结合这两张图进行分析。定义 dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列长度,不断斜向下判断下能否再加一。不能的话,继承上个或者左边的值。整体难度不大。


1035. 不相交的线

其实本题和 1143. 最长公共子序列 是一模一样的,大家可以尝试自己做一做。
视频讲解B站视频
题解链接不相交的线题解

看题目思考了一会,才发现这题不和上题一模一样吗?只不过一个是字符串,一个是数组。简单。秒杀

cpp 复制代码
class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        
 vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[nums1.size()][nums2.size()];

    }
};

53. 最大子序和

这道题我们之前用贪心算法做过,这次我们可以再用动态规划来做一遍。
视频讲解B站视频
题解链接最大子序和题解

cpp 复制代码
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
       vector<int>dp(nums.size(),0);    
       dp[0]=nums[0];
       int result = nums[0];
        for(int i=1;i<nums.size();i++)
        {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            result = (result > dp[i]) ? result : dp[i];
        }
        return result;
    }
};

只要知道递归公式:dp[i] = max(dp[i - 1] + nums[i], nums[i]);这题还是挺简单的。当然最难得还是注意最后的结果可不是dp[nums.size() - 1],因为dp[i]保存的是包含

nums[i]后最大子序列和。所以还得挑最大的。


392. 判断子序列

这道题可以算作 编辑距离问题 的入门题目(毕竟这里只是涉及到减法)。慢慢的,后面我们会解决真正的 编辑距离问题。
题解链接判断子序列题解

cpp 复制代码
class Solution {
public:
    bool isSubsequence(string s, string t) {
        if(s.size()>t.size())
        return false;
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[s.size()][t.size()]==s.size();
    }
};

这一题和第一题也是几乎一模一样,挺简单的。改下return 值即可。

相关推荐
低调包含2 分钟前
CRC校验
算法
yy_xzz19 分钟前
QLineEdit 控件在设置了 QDoubleValidator 之后无法正确输入小数
c++·qt
ya888g34 分钟前
信息学奥赛复赛复习19-CSP-J2023-02公路-贪心算法、向上取整、向下取整
c++·算法
夜雨翦春韭42 分钟前
【代码随想录Day58】图论Part09
java·开发语言·数据结构·算法·leetcode·图论
纪怽ぅ1 小时前
LSTM——长短期记忆神经网络
python·深度学习·神经网络·算法·机器学习·lstm
#Y清墨1 小时前
STL映射
数据结构·c++
yannan201903131 小时前
【算法】(Python)回溯算法
python·算法
无职转生真好看1 小时前
数据结构:利用队列的基本操作,模拟病人到医院排队看病过程。
数据结构·c++·算法
心软且酷丶1 小时前
leetcode:面试题 05.07. 配对交换(python3解法)
python·算法·leetcode
跃跃欲试-迪之2 小时前
构建您自己的 RAG 应用程序:使用 Ollama、Python 和 ChromaDB 在本地设置 LLM 的分步指南
人工智能·python·算法