吴恩达深度学习笔记(二)--神经网络及深度神经网络

构架神经网络的第一步:确定激活函数

神经网络的表现形式及输出:

每一个神经元相当于进行了一次逻辑回归计算,涉及下图右边两步的计算,输入层没有计算。

单个样例:

多个样本:将样本按照列排列方式写入矩阵中

激活函数:

建立神经网络想要确定隐藏层需要使用什么激活函数,以及神经网络的输出单位是什么。

不同激活函数

随机初始化参数:

在神经网络中,所有的权重参数初始化为0,两个隐藏层功能相同,但是参数b并不会影响

为了不同隐藏层具有不同的功能,随机化初始参数(0.01为了避免斜率绝对值小,下降速度慢的问题),避免对称问题(失效问题)

深度神经网络:

各个参数的规格:正确的矩阵维数

为什么使用深层神经网络:

对于人脸识别:

神经网络的第一层试图找出图片的边缘,通过将像素分组,形成边缘的方法,第二层网络可以取消检测边缘,将边缘组合在一起,形成面部的一部分,开始检测面部的不同部位:眼睛。第三层网络将不同部位组合在一起,可以尝试识别和检测不同了类型的面部。

可以将神经网络的浅层看作简单的检测函数:检测边缘,在神经网络的后一层将他们组合在一起,以便可以学习更多等复杂的功能。

对于语音识别,第一层神经网络可以学习到语言发音的一些音调,后面更深层次的网络可以检测到基本的音素,再到单词信息,逐渐加深可以学到短语、句子。

超参数和参数:

参数:期望模型学到的,如w,b

超参数:控制参数的输出,如:学习速率、迭代次数、隐藏层层数、每一层神经元的数目、激活函数,在某种程度上决定了期望学习到的参数的输出结果

目前超参数的确定依赖于不断的试错。

相关推荐
chushiyunen6 分钟前
dom操作笔记、xml和document等
xml·java·笔记
chushiyunen8 分钟前
tomcat使用笔记、启动失败但是未打印日志
java·笔记·tomcat
汇能感知13 分钟前
光谱相机的光谱数据采集原理
经验分享·笔记·科技
人人题36 分钟前
汽车加气站操作工考试答题模板
笔记·职场和发展·微信小程序·汽车·创业创新·学习方法·业界资讯
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
小脑斧爱吃鱼鱼1 小时前
鸿蒙项目笔记(1)
笔记·学习·harmonyos
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
lulinhao2 小时前
HCIA/HCIP基础知识笔记汇总
网络·笔记
杉之3 小时前
SpringBlade 数据库字段的自动填充
java·笔记·学习·spring·tomcat
WarPigs4 小时前
blender场景导入Unity的流程(个人总结)
笔记