吴恩达深度学习笔记(二)--神经网络及深度神经网络

构架神经网络的第一步:确定激活函数

神经网络的表现形式及输出:

每一个神经元相当于进行了一次逻辑回归计算,涉及下图右边两步的计算,输入层没有计算。

单个样例:

多个样本:将样本按照列排列方式写入矩阵中

激活函数:

建立神经网络想要确定隐藏层需要使用什么激活函数,以及神经网络的输出单位是什么。

不同激活函数

随机初始化参数:

在神经网络中,所有的权重参数初始化为0,两个隐藏层功能相同,但是参数b并不会影响

为了不同隐藏层具有不同的功能,随机化初始参数(0.01为了避免斜率绝对值小,下降速度慢的问题),避免对称问题(失效问题)

深度神经网络:

各个参数的规格:正确的矩阵维数

为什么使用深层神经网络:

对于人脸识别:

神经网络的第一层试图找出图片的边缘,通过将像素分组,形成边缘的方法,第二层网络可以取消检测边缘,将边缘组合在一起,形成面部的一部分,开始检测面部的不同部位:眼睛。第三层网络将不同部位组合在一起,可以尝试识别和检测不同了类型的面部。

可以将神经网络的浅层看作简单的检测函数:检测边缘,在神经网络的后一层将他们组合在一起,以便可以学习更多等复杂的功能。

对于语音识别,第一层神经网络可以学习到语言发音的一些音调,后面更深层次的网络可以检测到基本的音素,再到单词信息,逐渐加深可以学到短语、句子。

超参数和参数:

参数:期望模型学到的,如w,b

超参数:控制参数的输出,如:学习速率、迭代次数、隐藏层层数、每一层神经元的数目、激活函数,在某种程度上决定了期望学习到的参数的输出结果

目前超参数的确定依赖于不断的试错。

相关推荐
2的n次方_8 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训8 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
Gain_chance8 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
肖永威8 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
暗光之痕9 小时前
Unreal5研究笔记 Actor的生命周期函数
笔记·unreal engine
Gain_chance9 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
宵时待雨10 小时前
STM32笔记归纳9:定时器
笔记·stm32·单片机·嵌入式硬件
pp起床10 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
m0_7190841110 小时前
React笔记张天禹
前端·笔记·react.js
阿杰学AI10 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer