大模型应用开发正在逐渐改变各个行业,但对技术小白来说,了解并掌握这些复杂的工具和概念非常重要。
你是否觉得面对"LlamaIndex"、"Ollama"、"Anthropic"等术语无从下手?
你是否在应用开发时被各种名词搞得晕头转向,不知道它们之间的区别与联系?
我们将为你详细介绍这些关键概念,帮助你理清思路,从而更好地应用这些工具进行大模型开发。
01 大模型领域重要的名词
LlamaIndex
LlamaIndex 是一个帮助开发者将外部数据与大语言模型(LLMs)相结合的框架。
关联性: LlamaIndex 常与 Ollama 等工具结合使用,用于管理和查询大模型中的数据。
有什么用?
它可以通过创建数据的索引,加快模型查询的速度,简化处理大量信息的复杂度。
Llama
Llama 是由 Meta(前 Facebook)开发的大型语言模型,全称为 "Large Language Model Meta AI"。Llama 专注于自然语言处理任务,包括文本生成、翻译、对话等。
有什么用?
作为开源模型,Llama 为开发者提供了强大的语言处理能力,适合聊天机器人和内容生成等场景。
Ollama
Ollama 是一个由开源社区推动的框架,专注于简化大语言模型在本地环境中的部署和运行。
Ollama 在大模型开发中扮演着"运行管理者"的角色,允许开发者快速加载和切换不同的大模型,便于进行实验和性能优化,特别适合那些不希望依赖云服务的开发者。
关联性: Ollama 可以与 LlamaIndex、Hugging Face 的模型等结合使用,形成完整的本地开发和数据管理环境。
有什么用?
它能使得大模型在本地运行,而不需要依赖云服务,提供灵活的测试环境。
Anthropic
Anthropic 是一家专注于人工智能安全性和可控性的公司,成立于 2021 年,由 OpenAI 前员工创立。
有什么用?
他们公司开发的 Claude 系列语言模型因其对安全性的高度关注而著称,目标是减少模型输出中的偏见和误导性信息,准确度和精确度方面比GPT4更强。
Hugging Face
Hugging Face 是一家成立于 2016 年的人工智能公司,最初专注于聊天机器人,但后来转型成为自然语言处理(NLP)领域的领导者。
有什么用?
在大模型开发中,Hugging Face 扮演"模型提供者"的角色,它们提供了开源的 Transformers 库,内含大量预训练模型(如 BERT、GPT、Llama 等)。
能帮助开发者快速获取、使用和微调这些大模型,极大降低了构建 大模型应用的门槛。
Flask
Flask 是由 Armin Ronacher 开发的轻量级 Python Web 框架。
它的设计理念是简单、灵活,适合开发小型 Web 应用或 API 服务。
有什么用?
Flask 是大模型应用开发中的后端工具,通常用于创建与大模型交互的 Web 接口,使用户能够通过 Web 浏览器或移动端访问大模型生成的内容。由于其轻量化特点,Flask 常用于原型开发和快速迭代。
LangChain
LangChain 是一个由 Harrison Chase 开发的框架,专门为构建基于大语言模型的应用设计。
有什么用?
开发者可以通过LangChain 设定的链式结构,将模型、数据源和任务模块串联起来,形成一个完整的应用。
在大模型开发中扮演"应用逻辑管理者"的角色,帮助开发者将模型的强大功能嵌入到更复杂的任务中,如对话管理、数据处理等,使得大模型的应用开发变得更加系统化和模块化。
02 两两容易混淆的名词
LlamaIndex vs LangChain
两者都在大模型的上下游处理数据,但 LlamaIndex 侧重于数据的组织和查询效率,而 LangChain 侧重于应用逻辑的管理与实现。
因此,LlamaIndex 管理"数据",LangChain 管理"流程"。
Ollama vs Hugging Face
两者都支持模型的使用,但 Hugging Face 更专注于提供模型和预训练资源,而 Ollama 强调本地部署和使用。
简单来说,Ollama 更像是"本地化解决方案",而 Hugging Face 是"模型仓库"。
Flask vs LangChain
两者在大模型应用开发中都能用来搭建应用,但 Flask 主要负责 Web 层面的交互,而 LangChain 负责管理语言模型的任务链条。
Flask 处理"前后端交互",LangChain 处理"应用逻辑"。
Llama vs Claude (Anthropic 模型)
两者都是大语言模型,但 Llama 更注重通用的 NLP 应用,适合广泛的开发者社区;Claude 则特别关注安全性和责任问题,适合需要高安全保障的领域。
Claude 在"安全"上占优,而 Llama 在"开源"和"灵活性"上更具优势。
Hugging Face vs 大模型(GPT,Qwen等)
Hugging Face 平台常被误认为是大模型的开发者,实际上它是一个工具库和平台,提供这些大模型的接口和管理服务。
Hugging Face 本身并不创建 GPT ,Qwen这类大模型,而是提供了使用这些模型的途径,简化了大模型的使用流程。
最后的话
对于大模型开发的未来,我们应该保持开放的心态,你可以不用敲代码,但得了解原理,才有可能将其运用到自己的生活和工作中。
通过这些工具不断地解决实际问题,才能真正在未来时代握紧属于自己的一张船票。
希望带给你一些启发,加油。
在大模型时代,我们如何有效的去学习大模型?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习 ,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁, 这里我直接把都打包整理好,希望能够真正帮助到大家_。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型各大场景实战案例
结语
【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包 》,扫码获取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈