【OpenCV】(四)—— 边界填充

在OpenCV的图像处理中,边界填充主要用于在图像边缘添加额外的像素。这项技术在多种图像处理任务中都有重要的应用,包括但不限于卷积操作、图像缩放、形态学操作等。

opencv中边界填充的主要方法为copyMakeBorder,其函数原型如下:

cv2.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) → dst

参数说明

  • src:输入图像。

  • top:在图像顶部添加的边界宽度。

  • bottom:在图像底部添加的边界宽度。

  • left:在图像左侧添加的边界宽度。

  • right:在图像右侧添加的边界宽度。

  borderType

:边界类型,常见的有:

  • cv2.BORDER_CONSTANT:常数填充(用一个固定的值填充边界)。

  • cv2.BORDER_REFLECT:反射填充(镜像边缘像素)。

  • cv2.BORDER_REFLECT_101cv2.BORDER_DEFAULT:反射填充,但不包括最边缘的像素。

  • cv2.BORDER_REPLICATE:复制边缘像素。

  • cv2.BORDER_WRAP:循环填充(将图像的另一端的像素值复制到边界处)。

  • dst(可选):输出图像,如果未指定,则自动创建。

  • value(可选):当 borderTypecv2.BORDER_CONSTANT 时,用于指定填充的常数值,默认是黑色(0, 0, 0)。

py 复制代码
img = cv2.imread("cat.jpg")
# 填充大小
top_size,bottom_size,left_size,right_size = (50,50,50,50)
# 五种不同的填充方式
replicate = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_CONSTANT,value = 0)
py 复制代码
# 导入matplotlib更方便使用子图展示
import matplotlib.pyplot as plt
plt.subplot(231),plt.imshow(img),plt.title('RORGINAL')
plt.subplot(232),plt.imshow(replicate),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect),plt.title('REFELECT')
plt.subplot(234),plt.imshow(reflect101),plt.title('REFELECT_101')
plt.subplot(235),plt.imshow(wrap),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant),plt.title('CONSTANT')

大概观察一下填充的边界结果就能够理解每种填充方法是怎么样的原理:

相关推荐
qq_2739002342 分钟前
pytorch register_buffer介绍
人工智能·pytorch·python
龙的爹23332 小时前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
python_知世3 小时前
2024年中国金融大模型产业发展洞察报告(附完整PDF下载)
人工智能·自然语言处理·金融·llm·计算机技术·大模型微调·大模型研究报告
Fanstay9853 小时前
人工智能技术的应用前景及其对生活和工作方式的影响
人工智能·生活
lunch( ̄︶ ̄)3 小时前
《AI 使生活更美好》
人工智能·生活
Hoper.J3 小时前
用两行命令快速搭建深度学习环境(Docker/torch2.5.1+cu118/命令行美化+插件),包含完整的 Docker 安装步骤
人工智能·深度学习·docker
Shaidou_Data3 小时前
信息技术引领未来:大数据治理的实践与挑战
大数据·人工智能·数据清洗·信息技术·数据治理技术
Elastic 中国社区官方博客3 小时前
开始使用 Elastic AI Assistant 进行可观察性和 Microsoft Azure OpenAI
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
qq_273900234 小时前
pytorch detach方法介绍
人工智能·pytorch·python
AI狂热爱好者4 小时前
A3超级计算机虚拟机,为大型语言模型LLM和AIGC提供强大算力支持
服务器·人工智能·ai·gpu算力