【OpenCV】(四)—— 边界填充

在OpenCV的图像处理中,边界填充主要用于在图像边缘添加额外的像素。这项技术在多种图像处理任务中都有重要的应用,包括但不限于卷积操作、图像缩放、形态学操作等。

opencv中边界填充的主要方法为copyMakeBorder,其函数原型如下:

复制代码
cv2.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) → dst

参数说明

  • src:输入图像。

  • top:在图像顶部添加的边界宽度。

  • bottom:在图像底部添加的边界宽度。

  • left:在图像左侧添加的边界宽度。

  • right:在图像右侧添加的边界宽度。

复制代码
  borderType

:边界类型,常见的有:

  • cv2.BORDER_CONSTANT:常数填充(用一个固定的值填充边界)。

  • cv2.BORDER_REFLECT:反射填充(镜像边缘像素)。

  • cv2.BORDER_REFLECT_101cv2.BORDER_DEFAULT:反射填充,但不包括最边缘的像素。

  • cv2.BORDER_REPLICATE:复制边缘像素。

  • cv2.BORDER_WRAP:循环填充(将图像的另一端的像素值复制到边界处)。

  • dst(可选):输出图像,如果未指定,则自动创建。

  • value(可选):当 borderTypecv2.BORDER_CONSTANT 时,用于指定填充的常数值,默认是黑色(0, 0, 0)。

py 复制代码
img = cv2.imread("cat.jpg")
# 填充大小
top_size,bottom_size,left_size,right_size = (50,50,50,50)
# 五种不同的填充方式
replicate = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_CONSTANT,value = 0)
py 复制代码
# 导入matplotlib更方便使用子图展示
import matplotlib.pyplot as plt
plt.subplot(231),plt.imshow(img),plt.title('RORGINAL')
plt.subplot(232),plt.imshow(replicate),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect),plt.title('REFELECT')
plt.subplot(234),plt.imshow(reflect101),plt.title('REFELECT_101')
plt.subplot(235),plt.imshow(wrap),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant),plt.title('CONSTANT')

大概观察一下填充的边界结果就能够理解每种填充方法是怎么样的原理:

相关推荐
m0_650108241 小时前
【论文精读】STAR:基于文本到视频模型的空间-时间增强真实世界视频超分
计算机视觉·论文精读·真实世界视频超分·liem·dp loss·图像质量提升
EasyCVR3 小时前
视频融合平台EasyCVR在智慧水利中的实战应用:构建全域感知与智能预警平台
人工智能·音视频
DisonTangor3 小时前
阿里开源Qwen3-Omni-30B-A3B三剑客——Instruct、Thinking 和 Captioner
人工智能·语言模型·开源·aigc
独孤--蝴蝶3 小时前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新3 小时前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
丁学文武4 小时前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie88894 小时前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊5 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩5 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
却道天凉_好个秋5 小时前
OpenCV(七):BGR
opencv·计算机视觉