【OpenCV】(四)—— 边界填充

在OpenCV的图像处理中,边界填充主要用于在图像边缘添加额外的像素。这项技术在多种图像处理任务中都有重要的应用,包括但不限于卷积操作、图像缩放、形态学操作等。

opencv中边界填充的主要方法为copyMakeBorder,其函数原型如下:

复制代码
cv2.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) → dst

参数说明

  • src:输入图像。

  • top:在图像顶部添加的边界宽度。

  • bottom:在图像底部添加的边界宽度。

  • left:在图像左侧添加的边界宽度。

  • right:在图像右侧添加的边界宽度。

复制代码
  borderType

:边界类型,常见的有:

  • cv2.BORDER_CONSTANT:常数填充(用一个固定的值填充边界)。

  • cv2.BORDER_REFLECT:反射填充(镜像边缘像素)。

  • cv2.BORDER_REFLECT_101cv2.BORDER_DEFAULT:反射填充,但不包括最边缘的像素。

  • cv2.BORDER_REPLICATE:复制边缘像素。

  • cv2.BORDER_WRAP:循环填充(将图像的另一端的像素值复制到边界处)。

  • dst(可选):输出图像,如果未指定,则自动创建。

  • value(可选):当 borderTypecv2.BORDER_CONSTANT 时,用于指定填充的常数值,默认是黑色(0, 0, 0)。

py 复制代码
img = cv2.imread("cat.jpg")
# 填充大小
top_size,bottom_size,left_size,right_size = (50,50,50,50)
# 五种不同的填充方式
replicate = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,borderType = cv2.BORDER_CONSTANT,value = 0)
py 复制代码
# 导入matplotlib更方便使用子图展示
import matplotlib.pyplot as plt
plt.subplot(231),plt.imshow(img),plt.title('RORGINAL')
plt.subplot(232),plt.imshow(replicate),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect),plt.title('REFELECT')
plt.subplot(234),plt.imshow(reflect101),plt.title('REFELECT_101')
plt.subplot(235),plt.imshow(wrap),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant),plt.title('CONSTANT')

大概观察一下填充的边界结果就能够理解每种填充方法是怎么样的原理:

相关推荐
uncle_ll1 分钟前
李宏毅NLP-8-语音模型
人工智能·自然语言处理·语音识别·语音模型·lm
Liudef062 分钟前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc
静心问道3 分钟前
大型语言模型中的自动化思维链提示
人工智能·语言模型·大模型
众链网络30 分钟前
你的Prompt还有很大提升
人工智能·prompt·ai写作·ai工具·ai智能体
汀沿河32 分钟前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
路溪非溪39 分钟前
机器学习之线性回归
人工智能·机器学习·线性回归
Chef_Chen41 分钟前
从0开始学习计算机视觉--Day07--神经网络
神经网络·学习·计算机视觉
搞笑的秀儿2 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术2 小时前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot2 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算