基于matlab的仪器表盘识别

  1. 实验背景

指针式机械表盘具有安装维护方便、结构简单、防电磁干扰等诸多优点, 目前广泛应用于工矿企业、能源及计量等部门。随着仪表数量的增加及精密仪表技术的发展,人工判读已经不能满足实际应用需求。随着计算机技术和图像处理技术的不断发展,指针式机械表自动读表技术应运而生。该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。
2. 实验目的
(1)了解机械式表盘自动读表技术的基本原理。
(2)了解仪器表盘识别技术的基本方法和相关算法。
(3)学会利用MATLAB实现对图像的边缘检测、图像边缘锐化、二值化处理、Hough变换等图像处理技术。
3. 实验原理

根据机械式表盘的图像特征,采用图像边缘点法线方向计数累加的圆心定位方法及过定点的直线检测算法,达到表盘识别的目标。仪表刻度检测流程如下: 摄像头采集表盘图像,送入计算机进行预处理及边缘检测操作;计算机检测出表盘回转中心及半径,并定位出表盘的有效显示区域;在此区域内,利用过定点( 回转中心)的Hough 直线变换,基于特征点对应角度的峰值搜索算法识别出指针中心线,从而输出检测结果。
4 实验要求
(1)自选一副仪表图片。读入图像,对图像进行预处理及边缘检测操作。
(2)采用平滑滤波法对图像进行处理,滤波的同时锐化图像的边缘。
(3)通过对读入的仪表图像进行处理,能清楚的识别表盘指针指数,且具有较准确的识别精度。

5运行结果

  1. 实验程序
    RGB=imread('14.jpg');
    figure,imshow(RGB); title('RGB')
    GRAY=rgb2gray(RGB);
    figure,imshow(GRAY); title('GRAY')
    threshold=graythresh(GRAY);
    BW=im2bw(GRAY,threshold);
    figure,imshow(BW); title('BW')
    BW=~BW;
    figure,imshow(BW); title('~BW')
    BW=bwmorph(BW,'thin',Inf);
    figure,imshow(BW); title('BWMORPH')
    [M,N]=size(BW);
    [H,T,R] = hough(BW);
    figure;
    imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
    xlabel('\theta'), ylabel('\rho');
    axis on, axis normal, hold on;
    P = houghpeaks(H,1,'threshold',ceil(0.3*max(H(:))));
    x = T(P(:,2));
    y = R(P(:,1));
    plot(x,y,'s','color','white');
    %%%%%%%%%%%%%%%%%%%% Find lines and plot them%%%%%%%%%%%%%%
    for k = 1:length(lines)
    xy = [lines(k).point1; lines(k).point2];
    plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
    %%%%%%%%%% plot beginnings and ends of lines%%%%%%%%%%%%%%%%%%
    plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
    %%%% determine the endpoints of the longest line segment %%%%
    len = norm(lines(k).point1 - lines(k).point2);
    if ( len > max_len)
    max_len = len;
    xy_long = xy;
    end
    end
    %%%%%%%%%%%%% highlight the longest line segment%%%%%%%%%%%%%%
    plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
    k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1));
    theta=pi/2+atan(k);
    if((xy(1,1)+xy(2,1))/2<=N/2)
    q=(theta+pi)*180/3.14;
    else
    q=theta*180/3.14;
    end
    shishu=q*6/2700-0.2;
    disp (theta);
    disp (q);
    disp (shishu);
相关推荐
凤枭香1 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
远望清一色1 小时前
基于MATLAB的实现垃圾分类Matlab源码
开发语言·matlab
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
可均可可3 小时前
C++之OpenCV入门到提高004:Mat 对象的使用
c++·opencv·mat·imread·imwrite
蒙娜丽宁3 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
好喜欢吃红柚子4 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
plmm烟酒僧4 小时前
Windows下QT调用MinGW编译的OpenCV
开发语言·windows·qt·opencv
AI小杨4 小时前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
冷凝女子5 小时前
【QT】海康视频及openCv抓拍正脸接口
qt·opencv·音视频·海康
顶呱呱程序7 小时前
2-143 基于matlab-GUI的脉冲响应不变法实现音频滤波功能
算法·matlab·音视频·matlab-gui·音频滤波·脉冲响应不变法