基于matlab的仪器表盘识别

  1. 实验背景

指针式机械表盘具有安装维护方便、结构简单、防电磁干扰等诸多优点, 目前广泛应用于工矿企业、能源及计量等部门。随着仪表数量的增加及精密仪表技术的发展,人工判读已经不能满足实际应用需求。随着计算机技术和图像处理技术的不断发展,指针式机械表自动读表技术应运而生。该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。
2. 实验目的
(1)了解机械式表盘自动读表技术的基本原理。
(2)了解仪器表盘识别技术的基本方法和相关算法。
(3)学会利用MATLAB实现对图像的边缘检测、图像边缘锐化、二值化处理、Hough变换等图像处理技术。
3. 实验原理

根据机械式表盘的图像特征,采用图像边缘点法线方向计数累加的圆心定位方法及过定点的直线检测算法,达到表盘识别的目标。仪表刻度检测流程如下: 摄像头采集表盘图像,送入计算机进行预处理及边缘检测操作;计算机检测出表盘回转中心及半径,并定位出表盘的有效显示区域;在此区域内,利用过定点( 回转中心)的Hough 直线变换,基于特征点对应角度的峰值搜索算法识别出指针中心线,从而输出检测结果。
4 实验要求
(1)自选一副仪表图片。读入图像,对图像进行预处理及边缘检测操作。
(2)采用平滑滤波法对图像进行处理,滤波的同时锐化图像的边缘。
(3)通过对读入的仪表图像进行处理,能清楚的识别表盘指针指数,且具有较准确的识别精度。

5运行结果

  1. 实验程序
    RGB=imread('14.jpg');
    figure,imshow(RGB); title('RGB')
    GRAY=rgb2gray(RGB);
    figure,imshow(GRAY); title('GRAY')
    threshold=graythresh(GRAY);
    BW=im2bw(GRAY,threshold);
    figure,imshow(BW); title('BW')
    BW=~BW;
    figure,imshow(BW); title('~BW')
    BW=bwmorph(BW,'thin',Inf);
    figure,imshow(BW); title('BWMORPH')

M,N\]=size(BW); \[H,T,R\] = hough(BW); figure; imshow(H,\[\],'XData',T,'YData',R,'InitialMagnification','fit'); xlabel('\\theta'), ylabel('\\rho'); axis on, axis normal, hold on; P = houghpeaks(H,1,'threshold',ceil(0.3\*max(H(:)))); x = T(P(:,2)); y = R(P(:,1)); plot(x,y,'s','color','white'); %%%%%%%%%%%%%%%%%%%% Find lines and plot them%%%%%%%%%%%%%% for k = 1:length(lines) xy = \[lines(k).point1; lines(k).point2\]; plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); %%%%%%%%%% plot beginnings and ends of lines%%%%%%%%%%%%%%%%%% plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); %%%% determine the endpoints of the longest line segment %%%% len = norm(lines(k).point1 - lines(k).point2); if ( len \> max_len) max_len = len; xy_long = xy; end end %%%%%%%%%%%%% highlight the longest line segment%%%%%%%%%%%%%% plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1)); theta=pi/2+atan(k); if((xy(1,1)+xy(2,1))/2\<=N/2) q=(theta+pi)\*180/3.14; else q=theta\*180/3.14; end shishu=q\*6/2700-0.2; disp (theta); disp (q); disp (shishu);

相关推荐
不爱写代码的玉子7 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study7 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz7 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
春末的南方城市7 小时前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
且慢.58910 小时前
Python_day47
python·深度学习·计算机视觉
Unpredictable22210 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
jndingxin10 小时前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
吴声子夜歌12 小时前
OpenCV——Mat类及常用数据结构
数据结构·opencv·webpack
一勺汤14 小时前
YOLO12 改进|融入 Mamba 架构:插入视觉状态空间模块 VSS Block 的硬核升级
yolo·计算机视觉·mamba·yolov12·yolo12·yolo12该机·yolo12 mamba
YYXZZ。。15 小时前
PyTorch——优化器(9)
pytorch·深度学习·计算机视觉