基于matlab的仪器表盘识别

  1. 实验背景

指针式机械表盘具有安装维护方便、结构简单、防电磁干扰等诸多优点, 目前广泛应用于工矿企业、能源及计量等部门。随着仪表数量的增加及精密仪表技术的发展,人工判读已经不能满足实际应用需求。随着计算机技术和图像处理技术的不断发展,指针式机械表自动读表技术应运而生。该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。
2. 实验目的
(1)了解机械式表盘自动读表技术的基本原理。
(2)了解仪器表盘识别技术的基本方法和相关算法。
(3)学会利用MATLAB实现对图像的边缘检测、图像边缘锐化、二值化处理、Hough变换等图像处理技术。
3. 实验原理

根据机械式表盘的图像特征,采用图像边缘点法线方向计数累加的圆心定位方法及过定点的直线检测算法,达到表盘识别的目标。仪表刻度检测流程如下: 摄像头采集表盘图像,送入计算机进行预处理及边缘检测操作;计算机检测出表盘回转中心及半径,并定位出表盘的有效显示区域;在此区域内,利用过定点( 回转中心)的Hough 直线变换,基于特征点对应角度的峰值搜索算法识别出指针中心线,从而输出检测结果。
4 实验要求
(1)自选一副仪表图片。读入图像,对图像进行预处理及边缘检测操作。
(2)采用平滑滤波法对图像进行处理,滤波的同时锐化图像的边缘。
(3)通过对读入的仪表图像进行处理,能清楚的识别表盘指针指数,且具有较准确的识别精度。

5运行结果

  1. 实验程序
    RGB=imread('14.jpg');
    figure,imshow(RGB); title('RGB')
    GRAY=rgb2gray(RGB);
    figure,imshow(GRAY); title('GRAY')
    threshold=graythresh(GRAY);
    BW=im2bw(GRAY,threshold);
    figure,imshow(BW); title('BW')
    BW=~BW;
    figure,imshow(BW); title('~BW')
    BW=bwmorph(BW,'thin',Inf);
    figure,imshow(BW); title('BWMORPH')

M,N\]=size(BW); \[H,T,R\] = hough(BW); figure; imshow(H,\[\],'XData',T,'YData',R,'InitialMagnification','fit'); xlabel('\\theta'), ylabel('\\rho'); axis on, axis normal, hold on; P = houghpeaks(H,1,'threshold',ceil(0.3\*max(H(:)))); x = T(P(:,2)); y = R(P(:,1)); plot(x,y,'s','color','white'); %%%%%%%%%%%%%%%%%%%% Find lines and plot them%%%%%%%%%%%%%% for k = 1:length(lines) xy = \[lines(k).point1; lines(k).point2\]; plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); %%%%%%%%%% plot beginnings and ends of lines%%%%%%%%%%%%%%%%%% plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); %%%% determine the endpoints of the longest line segment %%%% len = norm(lines(k).point1 - lines(k).point2); if ( len \> max_len) max_len = len; xy_long = xy; end end %%%%%%%%%%%%% highlight the longest line segment%%%%%%%%%%%%%% plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1)); theta=pi/2+atan(k); if((xy(1,1)+xy(2,1))/2\<=N/2) q=(theta+pi)\*180/3.14; else q=theta\*180/3.14; end shishu=q\*6/2700-0.2; disp (theta); disp (q); disp (shishu);

相关推荐
OperateCode4 分钟前
AutoVideoMerge:让二刷更沉浸的自动化视频处理脚本工具
python·opencv·ffmpeg
七元权27 分钟前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
CoovallyAIHub1 小时前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
lxmyzzs1 小时前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
项目申报小狂人7 小时前
算法应用上新!自适应更新策略差分进化算法求解球形多飞行器路径规划问题,附完整MATLAB代码
开发语言·算法·matlab
躺平都躺不明白7 小时前
数学建模-评价类问题-优劣解距离法(TOPSIS)
数学建模·matlab
jndingxin1 天前
OpenCV图像注册模块
人工智能·opencv·计算机视觉
R-G-B1 天前
【P14 3-6 】OpenCV Python——视频加载、摄像头调用、视频基本信息获取(宽、高、帧率、总帧数)
python·opencv·视频加载·摄像头调用·获取视频基本信息·获取视频帧率·获取视频帧数
荼蘼1 天前
OpenCv(三)——图像平滑处理
人工智能·opencv·计算机视觉