深度学习_卷积神经网络知识点小结

为什么要使用卷积神经网络?

因为使用多层感知机进行深度学习的话, MLP使用全连接结构

导致参数数量随输入规模和网络深度呈指数增长。而且MLP参数众多,容易过拟合训练数据

而CNN通过局部连接和权值共享大幅减少参数数量,提高计算效率,降低了过拟合风险

CNN:卷积神经网络进行图像分类

图像卷积:

前置知识:

1.卷积-convolute, 专业术语有点抽象, 可以直接看第三点

通过两个函数f和g生成第三个函数。其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是"滑动平均"的推广

2.卷积运算对应于图像矩阵:

将图像矩阵和滤波器矩阵进行对应相乘再求和的运算, 转化得到新矩阵

3.提示:

是不是感觉挺抽象,我也是这么认为, 建议去网上看一看卷积运算的视频, 你会发现, 哦, 就是这么回事啊! 当然, 也可以直接点击文章下方的链接, 这是一套完整的机器学习+深度学习教程,

在教程的P43 8-1和8-2这两节有完整详尽的教学视频

作用:

快速定位图像中某些边缘特征,在图像矩阵中重点突出边缘特征

执行:

根据样本图片矩阵, 设置合适的轮廓过滤器,然后将图像矩阵和滤波器矩阵进行卷积运算, 转化得到突出边缘特诊的新矩阵

轮廓过滤器:

竖向轮廓过滤器

横向轮廓过滤器

sobel过滤器

图像池化:

前置知识:

池化: 按照一个固定规则对图像矩阵进行处理, 将其转化为更低维度的矩阵

其核心思想是将输入的特征图(FeatureMap)中的相邻像素进行组合,以减少特征图的尺寸和计算量

作用:

用于降低图像矩阵的维度,减少计算量和防止过拟合, 可以将高维度的图像矩阵转化为低维度的图像矩阵, 使我们可以在保留输入特征图中的主要信息,同时减少网络的参数数量和计算量

操作步骤:

个人感觉类似于卷积运算, 看个计算视频就全都明白, 也可以直接点击文章下方的链接, 这是一套完整的机器学习+深度学习教程,

在教程的P43 8-1和8-2这两节有完整详尽的教学视频

池化方式:

1.平均法池化(Avg-pooling):取池化窗口中像素的平均值作为结果输出到新矩阵

2.最大法池化(Max-pooling):取池化窗口中像素的最大值作为结果输出到新矩阵

卷积操作和池化操作的关系:

1.卷积操作主要用于从输入图像矩阵中提取边缘特征,

2.池化操作主要用于在保留图像中主要信息的前提下,尽量减少矩阵维度, 进而减少计算成本和训练速度

3.池化操作通常在卷积层之后进行,可以看作是对卷积层的输出进行压缩和摘要

卷积神经网络的组成:

卷积层+池化层+mlp=卷积神经网络(CNN)

卷积运算导致的问题:

1.图像被压缩, 造成信息丢失

改善方法:

选用合适的池化方法 ##

2.边缘信息使用频率少, 容易被忽略

改善方法:

对图像进行填充padding,在各边增加像素,使图像矩阵在进行卷积运算后维持原大小

填充像素的数量和形状由过滤器尺寸与stride决定

经典的CNN模型

LeNet-5:

输入图像:32*32,单通道

训练参数:6w

特点:

随着网络越深,图像的高度和宽度在缩小, 通道数在增加

卷积与池化先后成对使用

AlexNet:

输入图像:227*227*3rgb,三通道

训练参数:约6kw

特点:

适用于识别较为复杂的彩色图, 可识别1k个类别

结构比LeNet更复杂,使用Relu作为激活函数

历史意义:

关于AlexNet论文的发表,让学术界开始相信深度学习技术,可以在计算机视觉领域取得不错的效果

VGG-16

输入图像:227*227*3rgb,三通道

训练参数:约1.38ww

特点:

相对于alexnet, vgg-16,更加标准化, 统一化

所有卷积层的filter的宽和高都为3,步长为1,padding都使用same convolution

所有池化层的filter的宽和高都为2,步长为2

相比于AlexNet, 用更多的filter用于提取轮廓特征,具有更高精确性,

经典CNN模型应用于新场景:

1.(推荐)借用经典CNN模型结构对图像进行预处理,再建立MLP模型

1.加载经典CNN模型,对图像进行预处理

2.把预处理完成的数据作为输入, 分类结果作为输出, 建立一个mlp模型

3.训练模型

2.参考经典CNN模型结构搭建新模型

扩展1:

Relu与sigmoid函数的区别

Relu是分段函数, 计算简单

sigmoid是复合函数,计算复杂

对于大量数据的训练,选用relu可以更快收敛, 计算速度快

扩展2:

学习教程推荐

作为新手入门的小白, 体验各种机器学习教学视频,

感觉合适的学习路线:

机器学习--《IT教学》博主的《机器学习+深度学习教程》

深度学习--《IT扛霸子》博主的《AI人工智能从入门到精通》

相关推荐
weixin_437497771 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
cnxy1881 小时前
围棋对弈Python程序开发完整指南:步骤1 - 棋盘基础框架搭建
开发语言·python
喝拿铁写前端1 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat1 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技1 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪1 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子2 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z2 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人2 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风2 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习