机器学习_使用逻辑回归进行良/恶性乳腺癌肿瘤预测(附数据集下载链接, 长期有效)

关于代码中导入的模块, 个人更建议把导入的各个模块放在代码最前面, 有利于后期封装函数

当然, 对于新手来说, 我的建议是模块在使用的时候导入, 这样学习的印象更深刻,

等到知识和代码都熟练了, 再改也不迟

python 复制代码
# 1.导入外部数据集breast-cancer-wisconsin
import pandas as pd
names=["Sample code number","Clump Thickness","Uniformity of Cell Size","Uniformity of Cell Shape",
       "Marginal Adhesion","Single Epithelial Cell Size","Bare Nuclei","Bland Chromatin","Normal Nucleoli",  "Mitoses","Class"]
cancer_data=pd.read_csv(r"C:\Users\鹰\Desktop\ML_Set\breast_cancer_wisconsin\breast-cancer-wisconsin.data", names=names)
# 2.数据基本处理- 缺失值处理, 确定特征值和目标值, 数据集分割
# 缺失值处理, 关于缺失值, 特殊字符和异常值的检测和处理,  教学视频内没有讲, 怎么搞?
import numpy as np
print(cancer_data.isna().sum())
cancer_data=cancer_data.replace(to_replace="?", value=np.nan)
cancer_data=cancer_data.dropna()
# 确定特征值, 目标值
x_all=cancer_data.iloc[:, 1:-1]
y_all=cancer_data.iloc[:,-1]
# 分割数据集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_all,y_all, test_size=0.2)
# 3.特征工程-特征预处理
# 特征预处理-标准化
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit_transform(x_train)
scaler.fit_transform(x_test)
# 4.模型训练-逻辑回归
from sklearn.linear_model import LogisticRegression
estimator=LogisticRegression()
estimator.fit(x_train,y_train)
# 5.模型评估-预测值, 准确率, 分类模型的评估指标[精确率, 召回率, f1-score, AUC]
# 预测值
y_predict=estimator.predict(x_test)
print("predict_values :", y_predict)
# 准确率
score=estimator.score(x_test, y_test)
print("accuracy :", score)

# 精确率, 召回率, f1-score
from sklearn.metrics import classification_report
class_report=classification_report(y_test, y_predict,labels=(2,4),target_names=("Benign tumor(良性肿瘤)", "Malignant tumor(恶性肿瘤)"))
print(class_report)

# AUC指标, 适合评估不平衡二分类问题
y_test=np.where(y_test>3,1,0)
from sklearn.metrics import roc_auc_score
AUC=roc_auc_score(y_test,y_predict)
print("AUC :", AUC)

为了防止失效, 我就多放几个地址, 理解万岁,

第一个直接去官网下载数据集, 第二个是我通过百度网盘分享的链接

地址1:

Breast Cancer Wisconsin (Original) - UCI Machine Learning Repositoryhttps://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original

兄弟们, 注意啊,刻骨铭心的教训 当进入UCI网站时, 收索乳腺癌肿瘤预测, 会查找到三个数据集, 咱们应该选择数据集后面标注original, 样本数量为699的数据集

地址2:

链接:https://pan.baidu.com/s/1sTJdDaj_pXUvurlCWzWFDQ

提取码:dzlk

今天作者无话可说, 咱们青山不改, 有缘再见

相关推荐
坚毅不拔的柠檬柠檬几秒前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬5 分钟前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian11 分钟前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT19 分钟前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
失败尽常态52325 分钟前
用Python实现Excel数据同步到飞书文档
python·excel·飞书
2501_9044477427 分钟前
OPPO发布新型折叠屏手机 起售价8999
python·智能手机·django·virtualenv·pygame
青龙小码农27 分钟前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿33 分钟前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!1 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉1 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode