矩阵的可解性:关于Ax=b的研究

上一篇文章讲解了如何求解 A x = 0 Ax=0 Ax=0,得到 A A A的零空间。

类似的,我们今天学习的是如何求解 A x = b Ax=b Ax=b,并以此加强你对线性代数中,代数与空间的理解。


同样的,我们举与上一次一样的例子,矩阵 A A A为:

[ 1 2 2 2 2 4 6 8 3 6 8 10 ] \left[ \begin{matrix} 1 & 2 & 2 &2\\ 2 & 4 & 6&8\\ 3 & 6& 8 &10 \end{matrix} \right] 1232462682810

关于这个矩阵的详细分析与消元过程在上一篇文章讨论过,这里就不再赘述。


首先,我们将 b b b增广到矩阵 A A A中,得到如下矩阵:

∣ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {2}&{4}&{6}&{8} &{b_2}\\ {3}&{6}&{8}&{10}&{b_3} \end{array} \right| 1232462682810b1b2b3

经消元处理,能得到如下矩阵:

∣ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 × b 1 0 0 0 0 b 3 − b 2 − b 1 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {0}&{0}&{2}&{4} &{b_2-2\times b_1}\\ {0}&{0}&{0}&{0}&{b_3-b_2-b_1} \end{array} \right| 100200220240b1b2−2×b1b3−b2−b1


在继续进行下一步操作前,让我们想一想这个问题: A x = b Ax=b Ax=b在何时有解?

观察消元过后的第三行,不难发现, b b b的元素应该满足 b 3 − b 2 − b 1 = 0 b_3-b_2-b_1=0 b3−b2−b1=0,这样才能使矩阵第三行成立。对这个结论进行拓展,不难想到,当 b b b在矩阵 A A A的列空间内时,方程有解。明白这一点也会对我们接下来的操作有指导意义。


如同我们求零空间的方法,我们利用消元过后的自由列能快速得到一个关于 A x = b Ax=b Ax=b的特殊解。

具体到这道题上,我们可以看到 A 1 , 1 与 A 2 , 3 A_{1,1}与A_{2,3} A1,1与A2,3为主元。因为自由列的变量可以取任意值,为求计算方便,我们一般取其为0,即 x 2 = 0 , x 4 = 0 x_2=0,x_4=0 x2=0,x4=0。

那么此时的方程就变为了这样:

x 1 + 2 x 3 = b 1 2 × x 2 = b 2 − 2 b 1 x_1+2x_3=b_1 \\ 2 \times x_2 = b_2-2b_1 x1+2x3=b12×x2=b2−2b1

因为 b 1 , b 2 b_1,b_2 b1,b2为参数,所以现在我们就求得了特解 x p a r t i c u l a r , 即 x p x_{particular},即x_p xparticular,即xp


又一次同样的,我们采用求零空间时的方法,利用特解来求得所有的解,而这里也会用上零空间 N N N,设其中任意的元素为 n n n吧。

那么,我们有:

A x p = b A n = 0 Ax_p=b \\ An = 0 Axp=bAn=0

不难发现, A ( x p + n ) = b A(x_p+n)=b A(xp+n)=b,即特解加上零空间的和后得到的向量同样是方程的解。不妨猜想,特解加上零空间即使所有的解。前面证明了充分性,下面证明必要性:

设 x x x为一个任意的方程的解,有
A x = b A x p = b → A ( x − x P ) = 0 Ax=b \\ Ax_p=b \\ \rightarrow A(x-x_P)=0 Ax=bAxp=b→A(x−xP)=0

换言之 n + x p = x n+x_p=x n+xp=x

证得必要性成立。

所以,我们得到了 A x = b Ax=b Ax=b的解,即为其特解加上 A A A的零空间。

此时,再来想象一下,零空间是经过原点的向量空间,那么 A x = b Ax=b Ax=b的解就应是将零空间向特解的方向平移过去所得。要注意的是,其解并不包含原点,所以不是向量空间。


相关推荐
原装穿山乙思密达28 分钟前
如何利用矩阵化简平面上的二次型曲线
线性代数·矩阵·高等代数·解析几何
荒古前14 小时前
线性代数期末总复习的点点滴滴(1)
人工智能·线性代数·机器学习
程序猿阿伟15 小时前
《C++与 Armadillo:线性代数助力人工智能算法简化之路》
c++·人工智能·线性代数
云云32119 小时前
云手机:小红书矩阵搭建方案
服务器·线性代数·安全·智能手机·矩阵
阿正的梦工坊1 天前
矩阵-向量乘法的行与列的解释(Row and Column Interpretations):中英双语
线性代数·矩阵
m0_749317522 天前
蓝桥杯练习生第四天
java·算法·职场和发展·矩阵·蓝桥杯
橘子遇见BUG2 天前
Unity Shader学习日记 part 2 线性代数--矩阵
学习·线性代数·unity·矩阵·shader
雷达学弱狗2 天前
伪逆不能把矩阵变成单位阵
线性代数·算法·矩阵
阿正的梦工坊2 天前
差分矩阵(Difference Matrix)与累计和矩阵(Running Sum Matrix)的概念与应用:中英双语
线性代数·机器学习·矩阵
阿正的梦工坊2 天前
矩阵:Input-Output Interpretation of Matrices (中英双语)
线性代数·矩阵