LeetCode300:最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

代码如下

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //dp[i]是nums[i]的最大递增子序列
        //dp[i] = max(dp[j] + 1, dp[i]);
        int len = nums.size();
        if(len <= 1)    return len;
        vector<int> dp(len + 1, 1);
        int result = 0;
        dp[0] = 1;
        for(int i = 1; i < len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            if(dp[i] > result)
            {
                result = dp[i];
            }
        }

        return result;

    }
};

这个题目其实就是去寻找一个子序列在原有的序列中找到一个递增的就好

确定dp含义:dp[i]其实也就是题目所说的我们需要去寻找一个递增的子序列,那我们就定义dp[i]为nums[i]的最大递增子序列

dp递推公式:这个就是我们画一个数轴,如果我们要去找到一个最大的,那我们定好0到i这个区间,然后再用一个j来遍历,条件就是nums[i]>nums[j],然后去推导出来公式dp[i] = max(dp[j] + 1, dp[i]),dp[j] + 1是因为我们如果想让dp[j]和dp[i]相等,那么我们只能dp[j] + 1来等于dp[i],dp[i]的意思是,就是我们与dp[i]作比较,然后取一个最大值

初始化:dp[0] = 1, 因为就一个数嘛,那么就只有一种

遍历顺序:两层for循环,第一层for是为了定义0 - i的区间,第二层for循环是在0 - i的区间里,再去用一个j去找到一个最大值

返回的参数:在定义一个result = 0,找到的dp[i]的值,去与result比较,这个时候千万不是dp[nums.size() - 1],因为很有可能最后一个并不是这个递增子序列的最后一个

相关推荐
一只码代码的章鱼28 分钟前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
小小小小关同学28 分钟前
【JVM】垃圾收集器详解
java·jvm·算法
Swift社区32 分钟前
统计文本文件中单词频率的 Swift 与 Bash 实现详解
vue.js·leetcode·机器学习
圆圆滚滚小企鹅。34 分钟前
刷题笔记 贪心算法-1 贪心算法理论基础
笔记·算法·leetcode·贪心算法
Kacey Huang43 分钟前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
eguid_11 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
带多刺的玫瑰1 小时前
Leecode刷题C语言之收集所有金币可获得的最大积分
算法·深度优先
LabVIEW开发2 小时前
PID控制的优势与LabVIEW应用
算法·labview
涅槃寂雨2 小时前
C语言小任务——寻找水仙花数
c语言·数据结构·算法
就爱学编程2 小时前
从C语言看数据结构和算法:复杂度决定性能
c语言·数据结构·算法