LeetCode300:最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

代码如下

复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //dp[i]是nums[i]的最大递增子序列
        //dp[i] = max(dp[j] + 1, dp[i]);
        int len = nums.size();
        if(len <= 1)    return len;
        vector<int> dp(len + 1, 1);
        int result = 0;
        dp[0] = 1;
        for(int i = 1; i < len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            if(dp[i] > result)
            {
                result = dp[i];
            }
        }

        return result;

    }
};

这个题目其实就是去寻找一个子序列在原有的序列中找到一个递增的就好

确定dp含义:dp[i]其实也就是题目所说的我们需要去寻找一个递增的子序列,那我们就定义dp[i]为nums[i]的最大递增子序列

dp递推公式:这个就是我们画一个数轴,如果我们要去找到一个最大的,那我们定好0到i这个区间,然后再用一个j来遍历,条件就是nums[i]>nums[j],然后去推导出来公式dp[i] = max(dp[j] + 1, dp[i]),dp[j] + 1是因为我们如果想让dp[j]和dp[i]相等,那么我们只能dp[j] + 1来等于dp[i],dp[i]的意思是,就是我们与dp[i]作比较,然后取一个最大值

初始化:dp[0] = 1, 因为就一个数嘛,那么就只有一种

遍历顺序:两层for循环,第一层for是为了定义0 - i的区间,第二层for循环是在0 - i的区间里,再去用一个j去找到一个最大值

返回的参数:在定义一个result = 0,找到的dp[i]的值,去与result比较,这个时候千万不是dp[nums.size() - 1],因为很有可能最后一个并不是这个递增子序列的最后一个

相关推荐
TL滕2 分钟前
从0开始学算法——第十二天(KMP算法练习)
笔记·学习·算法
Math_teacher_fan6 分钟前
第二篇:核心几何工具类详解
人工智能·算法
汉克老师7 分钟前
CCF-NOI2025第二试题目与解析(第二题、集合(set))
c++·算法·noi·子集卷积·sos dp·mod 异常
mit6.82434 分钟前
presum|
算法
不穿格子的程序员35 分钟前
从零开始写算法——链表篇2:从“回文”到“环形”——链表双指针技巧的深度解析
数据结构·算法·链表·回文链表·环形链表
guygg881 小时前
基于Matlab的压缩感知信道估计算法实现
开发语言·算法·matlab
诺....1 小时前
C语言不确定循环会影响输入输出缓冲区的刷新
c语言·数据结构·算法
Yuroo zhou1 小时前
采矿定向技术演进:MEMS定向短节的崛起
算法·硬件架构·硬件工程·石油·钻井