LeetCode300:最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

代码如下

复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //dp[i]是nums[i]的最大递增子序列
        //dp[i] = max(dp[j] + 1, dp[i]);
        int len = nums.size();
        if(len <= 1)    return len;
        vector<int> dp(len + 1, 1);
        int result = 0;
        dp[0] = 1;
        for(int i = 1; i < len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            if(dp[i] > result)
            {
                result = dp[i];
            }
        }

        return result;

    }
};

这个题目其实就是去寻找一个子序列在原有的序列中找到一个递增的就好

确定dp含义:dp[i]其实也就是题目所说的我们需要去寻找一个递增的子序列,那我们就定义dp[i]为nums[i]的最大递增子序列

dp递推公式:这个就是我们画一个数轴,如果我们要去找到一个最大的,那我们定好0到i这个区间,然后再用一个j来遍历,条件就是nums[i]>nums[j],然后去推导出来公式dp[i] = max(dp[j] + 1, dp[i]),dp[j] + 1是因为我们如果想让dp[j]和dp[i]相等,那么我们只能dp[j] + 1来等于dp[i],dp[i]的意思是,就是我们与dp[i]作比较,然后取一个最大值

初始化:dp[0] = 1, 因为就一个数嘛,那么就只有一种

遍历顺序:两层for循环,第一层for是为了定义0 - i的区间,第二层for循环是在0 - i的区间里,再去用一个j去找到一个最大值

返回的参数:在定义一个result = 0,找到的dp[i]的值,去与result比较,这个时候千万不是dp[nums.size() - 1],因为很有可能最后一个并不是这个递增子序列的最后一个

相关推荐
CoderYanger2 分钟前
优选算法-优先级队列(堆):75.数据流中的第K大元素
java·开发语言·算法·leetcode·职场和发展·1024程序员节
希望有朝一日能如愿以偿3 分钟前
力扣每日一题:能被k整除的最小整数
数据结构·算法·leetcode
Controller-Inversion3 分钟前
力扣53最大字数组和
算法·leetcode·职场和发展
rit84324995 分钟前
基于感知节点误差的TDOA定位算法
算法
m0_372257029 分钟前
ID3 算法为什么可以用来优化决策树
算法·决策树·机器学习
q***252125 分钟前
SpringMVC 请求参数接收
前端·javascript·算法
Dream it possible!26 分钟前
LeetCode 面试经典 150_图_克隆图(90_133_C++_中等)(深度优先:DFS)
c++·leetcode·面试·
数模加油站39 分钟前
25认证杯C题成品论文第一弹【冲奖硬核+无盲点解析】
算法·数学建模·认证杯·25认证杯
MobotStone43 分钟前
数字沟通之道
人工智能·算法
点云SLAM1 小时前
Boost库中Math 模块的插值(interpolation使用和示例
算法·插值·boost库·b-spline·akima 样条·单调三次样条·barycentric 插值