LeetCode300:最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

代码如下

复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //dp[i]是nums[i]的最大递增子序列
        //dp[i] = max(dp[j] + 1, dp[i]);
        int len = nums.size();
        if(len <= 1)    return len;
        vector<int> dp(len + 1, 1);
        int result = 0;
        dp[0] = 1;
        for(int i = 1; i < len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            if(dp[i] > result)
            {
                result = dp[i];
            }
        }

        return result;

    }
};

这个题目其实就是去寻找一个子序列在原有的序列中找到一个递增的就好

确定dp含义:dp[i]其实也就是题目所说的我们需要去寻找一个递增的子序列,那我们就定义dp[i]为nums[i]的最大递增子序列

dp递推公式:这个就是我们画一个数轴,如果我们要去找到一个最大的,那我们定好0到i这个区间,然后再用一个j来遍历,条件就是nums[i]>nums[j],然后去推导出来公式dp[i] = max(dp[j] + 1, dp[i]),dp[j] + 1是因为我们如果想让dp[j]和dp[i]相等,那么我们只能dp[j] + 1来等于dp[i],dp[i]的意思是,就是我们与dp[i]作比较,然后取一个最大值

初始化:dp[0] = 1, 因为就一个数嘛,那么就只有一种

遍历顺序:两层for循环,第一层for是为了定义0 - i的区间,第二层for循环是在0 - i的区间里,再去用一个j去找到一个最大值

返回的参数:在定义一个result = 0,找到的dp[i]的值,去与result比较,这个时候千万不是dp[nums.size() - 1],因为很有可能最后一个并不是这个递增子序列的最后一个

相关推荐
CoovallyAIHub19 分钟前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
点云SLAM1 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
renhongxia11 小时前
大模型微调RAG、LORA、强化学习
人工智能·深度学习·算法·语言模型
DdduZe2 小时前
8.19作业
数据结构·算法
PyHaVolask2 小时前
链表基本运算详解:查找、插入、删除及特殊链表
数据结构·算法·链表
高山上有一只小老虎2 小时前
走方格的方案数
java·算法
吧唧霸2 小时前
golang读写锁和互斥锁的区别
开发语言·算法·golang
1白天的黑夜13 小时前
链表-2.两数相加-力扣(LeetCode)
数据结构·leetcode·链表