LeetCode300:最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

代码如下

复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //dp[i]是nums[i]的最大递增子序列
        //dp[i] = max(dp[j] + 1, dp[i]);
        int len = nums.size();
        if(len <= 1)    return len;
        vector<int> dp(len + 1, 1);
        int result = 0;
        dp[0] = 1;
        for(int i = 1; i < len; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            if(dp[i] > result)
            {
                result = dp[i];
            }
        }

        return result;

    }
};

这个题目其实就是去寻找一个子序列在原有的序列中找到一个递增的就好

确定dp含义:dp[i]其实也就是题目所说的我们需要去寻找一个递增的子序列,那我们就定义dp[i]为nums[i]的最大递增子序列

dp递推公式:这个就是我们画一个数轴,如果我们要去找到一个最大的,那我们定好0到i这个区间,然后再用一个j来遍历,条件就是nums[i]>nums[j],然后去推导出来公式dp[i] = max(dp[j] + 1, dp[i]),dp[j] + 1是因为我们如果想让dp[j]和dp[i]相等,那么我们只能dp[j] + 1来等于dp[i],dp[i]的意思是,就是我们与dp[i]作比较,然后取一个最大值

初始化:dp[0] = 1, 因为就一个数嘛,那么就只有一种

遍历顺序:两层for循环,第一层for是为了定义0 - i的区间,第二层for循环是在0 - i的区间里,再去用一个j去找到一个最大值

返回的参数:在定义一个result = 0,找到的dp[i]的值,去与result比较,这个时候千万不是dp[nums.size() - 1],因为很有可能最后一个并不是这个递增子序列的最后一个

相关推荐
这张生成的图像能检测吗18 分钟前
(论文速读)多任务深度学习框架下基于Lamb波的多损伤数据集构建与量化算法
人工智能·深度学习·算法·数据集·结构健康监测
小曹要微笑3 小时前
STM32H7系列全面解析:嵌入式性能的巅峰之作
c语言·stm32·单片机·嵌入式硬件·算法
寻星探路3 小时前
JavaSE重点总结后篇
java·开发语言·算法
松涛和鸣5 小时前
14、C 语言进阶:函数指针、typedef、二级指针、const 指针
c语言·开发语言·算法·排序算法·学习方法
yagamiraito_7 小时前
757. 设置交集大小至少为2 (leetcode每日一题)
算法·leetcode·go
星释7 小时前
Rust 练习册 57:阿特巴什密码与字符映射技术
服务器·算法·rust
无敌最俊朗@7 小时前
力扣hot100-141.环形链表
算法·leetcode·链表
WWZZ202510 小时前
快速上手大模型:深度学习10(卷积神经网络2、模型训练实践、批量归一化)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
sali-tec11 小时前
C# 基于halcon的视觉工作流-章62 点云采样
开发语言·图像处理·人工智能·算法·计算机视觉
fashion 道格11 小时前
用 C 语言玩转归并排序:递归实现的深度解析
数据结构·算法·排序算法