YOLO11改进 | 卷积模块 | 卷积模块替换为选择性内核SKConv【附完整代码一键运行】

秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】------点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的卷积替换为SKConv结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:************YOLO11入门 + 改进涨点------点击即可跳转 欢迎订阅****************

目录

1.论文

[2. SKConv代码实现](#2. SKConv代码实现)

[2.1 将SKConv添加到YOLO11中](#2.1 将SKConv添加到YOLO11中)

[2.2 更改init.py文件](#2.2 更改init.py文件)

[2.3 添加yaml文件](#2.3 添加yaml文件)

[2.4 在task.py中进行注册](#2.4 在task.py中进行注册)

[2.5 执行程序](#2.5 执行程序)

3.修改后的网络结构图

[4. 完整代码分享](#4. 完整代码分享)

[5. GFLOPs](#5. GFLOPs)

[6. 进阶](#6. 进阶)

7.总结


1.论文

官方论文Selective Kernel Networks------点击即可跳转

官方代码代码仓库地址------点击即可跳转

2. SKConv代码实现

2.1 将SKConv添加到YOLO11中

**关键步骤一:**将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中

python 复制代码
class SKConv(nn.Module):
    def __init__(self, features, WH, M=2, G=1, r=2, stride=1, L=32):
        """ Constructor
        Args:
            features: input channel dimensionality.
            WH: input spatial dimensionality, used for GAP kernel size.
            M: the number of branchs.
            G: num of convolution groups.
            r: the radio for compute d, the length of z.
            stride: stride, default 1.
            L: the minimum dim of the vector z in paper, default 32.
        """
        super(SKConv, self).__init__()
        d = max(int(features / r), L)
        self.M = M
        self.features = features
        self.convs = nn.ModuleList([])
        for i in range(M):
            self.convs.append(
                nn.Sequential(
                    nn.Conv2d(features,
                              features,
                              kernel_size=3 + i * 2,
                              stride=stride,
                              padding=1 + i,
                              groups=G), nn.BatchNorm2d(features),
                    nn.ReLU(inplace=False)))
        # self.gap = nn.AvgPool2d(int(WH/stride))
        # print("D:", d)
        self.fc = nn.Linear(features, d)
        self.fcs = nn.ModuleList([])
        for i in range(M):
            self.fcs.append(nn.Linear(d, features))
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        for i, conv in enumerate(self.convs):
            fea = conv(x).unsqueeze_(dim=1)
            if i == 0:
                feas = fea
            else:
                feas = torch.cat([feas, fea], dim=1)
        fea_U = torch.sum(feas, dim=1)
        # fea_s = self.gap(fea_U).squeeze_()
        fea_s = fea_U.mean(-1).mean(-1)
        fea_z = self.fc(fea_s)
        for i, fc in enumerate(self.fcs):
            # print(i, fea_z.shape)
            vector = fc(fea_z).unsqueeze_(dim=1)
            # print(i, vector.shape)
            if i == 0:
                attention_vectors = vector
            else:
                attention_vectors = torch.cat([attention_vectors, vector],
                                              dim=1)
        attention_vectors = self.softmax(attention_vectors)
        attention_vectors = attention_vectors.unsqueeze(-1).unsqueeze(-1)
        fea_v = (feas * attention_vectors).sum(dim=1)
        return fea_v

2.2 更改init.py文件

**关键步骤二:**修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

**关键步骤三:**在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_SKConv.yaml文件,粘贴下面的内容

  • 目标检测
python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
 
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

 
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, SKConv, [512]] 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
 
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

 
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, SKConv, [512]] 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 23], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
 
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

 
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, SKConv, [512]] 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 23], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple


python 复制代码
# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024
 
# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024
 
# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512
 
# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 
 
# YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

**关键步骤四:**在parse_model函数中进行注册,添加SKConv

先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加SKConv

2.5 执行程序

关键步骤五: 在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_SKConv.yaml的路径即可

python 复制代码
from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

🚀运行程序,如果出现下面的内容则说明添加成功🚀

python 复制代码
                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  2      9088  ultralytics.nn.modules.block.C3k2            [32, 32, 2, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  3     49152  ultralytics.nn.modules.block.C3k2            [64, 64, 3, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  3    493248  ultralytics.nn.modules.conv.SKConv           [128, 128, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  2    560128  ultralytics.nn.modules.block.C3k2            [256, 256, 2, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 16                  -1  1     28000  ultralytics.nn.modules.block.C3k2            [192, 64, 1, False]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 23        [16, 19, 22]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_SKConv summary: 453 layers, 3,173,568 parameters, 3,173,552 gradients, 7.9 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

++这个后期补充吧~,先按照步骤来即可++

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识------Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏------<专栏地址:YOLO11入门 + 改进涨点------点击即可跳转 欢迎订阅****>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ------专栏地址:YOLO11入门 + 改进涨点------点击即可跳转 欢迎订阅****

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享 :所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑 :订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

相关推荐
网易独家音乐人Mike Zhou2 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书2 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd2 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao3 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
小二·3 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼5 小时前
Python 神经网络项目常用语法
python
一念之坤6 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812277 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder7 小时前
Python入门(12)--数据处理
开发语言·python
ZHOU_WUYI7 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt