<项目代码>YOLOv8煤矿输送带异物识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>路面垃圾识别数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

相关推荐
old_power22 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
通信.萌新31 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家33 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼35 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Bran_Liu36 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
伟贤AI之路38 分钟前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_3077791339 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying551 小时前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask