<项目代码>YOLOv8表情识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>表情识别数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
DP+GISer3 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory04316 分钟前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类
rengang666 分钟前
07-逻辑回归:分析用于分类问题的逻辑回归模型及其数学原理
人工智能·算法·机器学习·分类·逻辑回归
居7然20 分钟前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp
老兵发新帖24 分钟前
归一化分析3
人工智能
QYR_1135 分钟前
2025-2031年全球 MT 插芯市场全景分析报告:技术演进、供需格局与投资前景
人工智能·自然语言处理·机器翻译
mwq3012336 分钟前
从GPT-1到GPT-2的性能飞跃及其驱动因素分析
人工智能
mwq301231 小时前
GPT-2技术范式解析:无监督多任务学习的概率视角
人工智能
听风吹雨yu1 小时前
RK3588从数据集到训练到部署YoloV8
linux·yolo·开源·rk3588·rknn