GAN对抗生成网络

GAN原理

生成器(Generator):

生成器的任务是从随机噪声(通常是从正态分布或均匀分布中采样)中生成伪造数据,目的是让这些数据看起来尽可能像真实数据。

判别器(Discriminator):

判别器的任务是区分生成器生成的伪造数据和真实数据。它通过对输入数据进行分类,输出一个概率值,表示该数据是"真实"还是"伪造"。

对抗过程:

生成器和判别器在训练过程中处于一种博弈状态。生成器尝试生成能够欺骗判别器的数据,而判别器则试图尽可能准确地识别伪造数据和真实数据。这个过程通过交替优化生成器和判别器的损失函数来实现。

作用:

GAN能够生成与训练数据分布相似的新数据,在图像生成、图像超分辨率、风格转换、文本生成等领域有广泛应用。

GAN的训练过程可以看作是一个二人零和博弈:

  • 生成器的目标是最大化判别器分类错误的概率,即最大化判别器预测为真实数据的概率。
  • 判别器的目标是最大化区分真实数据和生成数据的能力,即最大化正确分类的概率。

GAN的优化目标是通过以下损失函数来实现的:

代码实现

python 复制代码
import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=100, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=128, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    '''
        Generator network: 使用多层感知机
    '''
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    '''
        Discriminator network: 使用多层感知机
    '''
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))


Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):

        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(Tensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise as generator input
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))

        # Generate a batch of images
        gen_imgs = generator(z)

        # Loss measures generator's ability to fool the discriminator
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Measure discriminator's ability to classify real from generated samples
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

效果

相关推荐
AI技术控12 分钟前
计算机视觉算法实战——驾驶员安全带检测
人工智能·算法·计算机视觉
LucianaiB13 分钟前
基于自然语言处理的垃圾短信识别系统
人工智能·自然语言处理·垃圾短信识别系统
feifeikon1 小时前
大模型GUI系列论文阅读 DAY4续:《Large Language Model Agent for Fake News Detection》
论文阅读·人工智能·语言模型
feifeikon1 小时前
图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
论文阅读·人工智能·神经网络
SharkWeek.2 小时前
【力扣Hot 100】普通数组2
数据结构·算法·leetcode
ZStack开发者社区3 小时前
AI应用、轻量云、虚拟化|云轴科技ZStack参编金融行标与报告
人工智能·科技·金融
存内计算开发者4 小时前
机器人奇点:从宇树科技看2025具身智能发展
深度学习·神经网络·机器学习·计算机视觉·机器人·视觉检测·具身智能
真想骂*5 小时前
人工智能如何重塑音频、视觉及多模态领域的应用格局
人工智能·音视频
赛丽曼7 小时前
机器学习-K近邻算法
人工智能·机器学习·近邻算法
大懒猫软件8 小时前
如何运用python爬虫获取大型资讯类网站文章,并同时导出pdf或word格式文本?
python·深度学习·自然语言处理·网络爬虫