机器学习中线性回归可以用来做预测,经典的例子就是房价预测。逻辑回归主要解决的问题是二分类问题,通过 Sigmoid 函数,输出的结果是一个概率(0,1),逻辑回归的损失函数通过交叉熵来实现。本文将通过 Sklearn 实现逻辑回归。
- Sigmoid 函数
- 交叉熵损失函数
准备数据集
# 导入matplotlib绘图库
import matplotlib.pyplot as plt
# 导入生成分类数据函数
# from sklearn.datasets.samples_generator import make_classification
from sklearn.datasets import make_classification
# 生成100*2的模拟二分类数据集
X, labels = make_classification(
n_samples=100,
n_features=2,
n_redundant=0,
n_informative=2,
random_state=1,
n_clusters_per_class=2)
print (X[:5])
print (labels[:5])
# 设置随机数种子
rng = np.random.RandomState(2)
# 对生成的特征数据添加一组均匀分布噪声
X += 2 * rng.uniform(size=X.shape)
# 标签类别数
unique_lables = set(labels)
# 根据标签类别数设置颜色
colors = plt.cm.Spectral(np.linspace(0,1,len(unique_lables)))
# 绘制模拟数据的散点图
for k,col in zip(unique_lables, colors):
x_k=X[labels==k]
plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
markersize=14)
plt.title('Simulated binary data set')
plt.show();
切分训练集、测试集,1:9 进行切分。
# 训练集与测试集的简单划分
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], labels[:offset]
X_test, y_test = X[offset:], labels[offset:]
y_train = y_train.reshape((-1,1))
y_test = y_test.reshape((-1,1))
print('X_train=', X_train.shape)
print('X_test=', X_test.shape)
print('y_train=', y_train.shape)
print('y_test=', y_test.shape)
训练并测试
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=0).fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_pred
总结
线性回归和逻辑回归是机器学习中两种回归算法,从字面上看会被搞混。线性回归输出为一个实数,均方差作为损失函数,逻辑回归是分类算法,输出为概率,交叉熵作为损失函数。