Matlab实现海鸥优化算法(SOA)求解路径规划问题

目录

1.内容介绍

2.部分代码

3.实验结果

4.内容获取

1内容介绍

海鸥优化算法(SOA)是一种基于自然界海鸥觅食行为的新型优化算法。该算法通过模拟海鸥在寻找食物过程中的飞行模式、群体互动和信息共享,来探索问题的最优解。SOA因其高效的问题求解能力和良好的鲁棒性而受到重视。

算法特点:

  • 模拟觅食行为:SOA通过模拟海鸥的探索、跟随和聚集行为来搜索最优解。
  • 简洁的数学模型:算法采用直观的数学公式来描述海鸥的行为,易于理解和实现。
  • 高效寻优:能够快速定位最优路径,显著提高路径规划的效率。
  • 适应性强:能在复杂多变的环境中保持良好的性能,适用于多种优化任务。

在路径规划中的优势:

  • 快速收敛:通过模拟海鸥的觅食行为,SOA能够迅速找到接近最优的路径。
  • 鲁棒性强:即使在环境条件变化较大的情况下,也能保持路径规划的最优性和稳定性。
  • 灵活性高:适用于无人机航路规划、自动驾驶汽车路径选择等多个应用场景。
  • 易于集成:算法结构清晰,易于与其他系统或技术结合,促进智能导航系统的开发。

海鸥优化算法为路径规划问题提供了新的解决方案,不仅加快了最优路径的搜索速度,还增强了路径规划的准确性和可靠性,是实现智能化导航的重要工具之一。

2部分代码

clc

clear

close all

tic

%% 地图

G=EXE;

for i=1:20/2

for j=1:20

m=G(i,j);

n=G(21-i,j);

G(i,j)=n;

G(21-i,j)=m;

end

end

%%

S = [1 1];

E = [20 20];

G0 = G;

G = G0(S(1):E(1),S(2):E(2));

[Xmax,dimensions] = size(G);

dimensions = dimensions - 2;

%% 参数设置

SearchAgents_no=20; % Number of search agentszhogn'qu群数量

Max_iteration=200; % Maximum numbef of iterations迭代次数

X_min = 1;

%% 算法

[Alpha_score,Alpha_pos,Convergence_curve]=SOA(SearchAgents_no,Max_iteration,dimensions,Xmax,G);

global_best=Alpha_pos;

%% 结果分析

global_best = round(global_best);

figure(1)

plot(Convergence_curve,'g-');

hold on

xlabel('迭代次数')

ylabel('路径长度')

title(' 收敛曲线变化趋势 ')

legend('SOA')

route = [S(1) Alpha_pos E(1)];

path=generateContinuousRoute(route,G);

path=GenerateSmoothPath(path,G);

figure(2)

for i=1:20/2

for j=1:20

m=G(i,j);

n=G(21-i,j);

G(i,j)=n;

G(21-i,j)=m;

end

end

n=20;

for i=1:20

for j=1:20

if G(i,j)==1

x1=j-1;y1=n-i;

x2=j;y2=n-i;

x3=j;y3=n-i+1;

x4=j-1;y4=n-i+1;

fill([x1,x2,x3,x4],[y1,y2,y3,y4],'K');

hold on

else

x1=j-1;y1=n-i;

x2=j;y2=n-i;

x3=j;y3=n-i+1;

x4=j-1;y4=n-i+1;

fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);

hold on

end

end

end

hold on

title(' 20*20栅格地图 ')

%% 路径

L=size(path,1);

Sx=path(1,1)-0.5;

Sy=path(1,2)-0.5;

plot(Sx,Sy,'ro','MarkerSize',4,'LineWidth',4); % 起点

for i=1:L-1

figure(2)

SOA=plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'g+-','LineWidth',1.5,'markersize',4);

end

Ex=path(end,1)-0.5;

Ey=path(end,2)-0.5;

plot(Ey,Ex,'gs','MarkerSize',4,'LineWidth',4); % 终点

hold on

legend(SOA,{'SOA'})

3实验结果

4内容获取

主页简介欢迎自取,点点关注,非常感谢!

Matlab实现海鸥优化算法(SOA)求解路径规划问题源码介绍:

1.MatlabR2018b及以上版本一键运行;

2.具有良好的编程习惯,程序均包含简要注释。

相关推荐
Theodore_10222 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
网易独家音乐人Mike Zhou2 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书2 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd2 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao3 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
----云烟----4 小时前
QT中QString类的各种使用
开发语言·qt
lsx2024064 小时前
SQL SELECT 语句:基础与进阶应用
开发语言
小二·4 小时前
java基础面试题笔记(基础篇)
java·笔记·python
开心工作室_kaic4 小时前
ssm161基于web的资源共享平台的共享与开发+jsp(论文+源码)_kaic
java·开发语言·前端
向宇it4 小时前
【unity小技巧】unity 什么是反射?反射的作用?反射的使用场景?反射的缺点?常用的反射操作?反射常见示例
开发语言·游戏·unity·c#·游戏引擎