Matlab实现海鸥优化算法(SOA)求解路径规划问题

目录

1.内容介绍

2.部分代码

3.实验结果

4.内容获取

1内容介绍

海鸥优化算法(SOA)是一种基于自然界海鸥觅食行为的新型优化算法。该算法通过模拟海鸥在寻找食物过程中的飞行模式、群体互动和信息共享,来探索问题的最优解。SOA因其高效的问题求解能力和良好的鲁棒性而受到重视。

算法特点:

  • 模拟觅食行为:SOA通过模拟海鸥的探索、跟随和聚集行为来搜索最优解。
  • 简洁的数学模型:算法采用直观的数学公式来描述海鸥的行为,易于理解和实现。
  • 高效寻优:能够快速定位最优路径,显著提高路径规划的效率。
  • 适应性强:能在复杂多变的环境中保持良好的性能,适用于多种优化任务。

在路径规划中的优势:

  • 快速收敛:通过模拟海鸥的觅食行为,SOA能够迅速找到接近最优的路径。
  • 鲁棒性强:即使在环境条件变化较大的情况下,也能保持路径规划的最优性和稳定性。
  • 灵活性高:适用于无人机航路规划、自动驾驶汽车路径选择等多个应用场景。
  • 易于集成:算法结构清晰,易于与其他系统或技术结合,促进智能导航系统的开发。

海鸥优化算法为路径规划问题提供了新的解决方案,不仅加快了最优路径的搜索速度,还增强了路径规划的准确性和可靠性,是实现智能化导航的重要工具之一。

2部分代码

clc

clear

close all

tic

%% 地图

G=EXE;

for i=1:20/2

for j=1:20

m=G(i,j);

n=G(21-i,j);

G(i,j)=n;

G(21-i,j)=m;

end

end

%%

S = [1 1];

E = [20 20];

G0 = G;

G = G0(S(1):E(1),S(2):E(2));

Xmax,dimensions\] = size(G); dimensions = dimensions - 2; %% 参数设置 SearchAgents_no=20; % Number of search agentszhogn'qu群数量 Max_iteration=200; % Maximum numbef of iterations迭代次数 X_min = 1; %% 算法 \[Alpha_score,Alpha_pos,Convergence_curve\]=SOA(SearchAgents_no,Max_iteration,dimensions,Xmax,G); global_best=Alpha_pos; %% 结果分析 global_best = round(global_best); figure(1) plot(Convergence_curve,'g-'); hold on xlabel('迭代次数') ylabel('路径长度') title(' 收敛曲线变化趋势 ') legend('SOA') route = \[S(1) Alpha_pos E(1)\]; path=generateContinuousRoute(route,G); path=GenerateSmoothPath(path,G); figure(2) for i=1:20/2 for j=1:20 m=G(i,j); n=G(21-i,j); G(i,j)=n; G(21-i,j)=m; end end n=20; for i=1:20 for j=1:20 if G(i,j)==1 x1=j-1;y1=n-i; x2=j;y2=n-i; x3=j;y3=n-i+1; x4=j-1;y4=n-i+1; fill(\[x1,x2,x3,x4\],\[y1,y2,y3,y4\],'K'); hold on else x1=j-1;y1=n-i; x2=j;y2=n-i; x3=j;y3=n-i+1; x4=j-1;y4=n-i+1; fill(\[x1,x2,x3,x4\],\[y1,y2,y3,y4\],\[1,1,1\]); hold on end end end hold on title(' 20\*20栅格地图 ') %% 路径 L=size(path,1); Sx=path(1,1)-0.5; Sy=path(1,2)-0.5; plot(Sx,Sy,'ro','MarkerSize',4,'LineWidth',4); % 起点 for i=1:L-1 figure(2) SOA=plot(\[path(i,2) path(i+1,2)\]-0.5,\[path(i,1) path(i+1,1)\]-0.5,'g+-','LineWidth',1.5,'markersize',4); end Ex=path(end,1)-0.5; Ey=path(end,2)-0.5; plot(Ey,Ex,'gs','MarkerSize',4,'LineWidth',4); % 终点 hold on legend(SOA,{'SOA'}) **3实验结果** ![](https://i-blog.csdnimg.cn/direct/17d5d063ee3540749998b86128a2eeda.jpeg) ![](https://i-blog.csdnimg.cn/direct/a3899ffb52004928be3e17dcf6bba433.jpeg) **4内容获取** 主页简介欢迎自取,点点关注,非常感谢! Matlab实现海鸥优化算法(SOA)求解路径规划问题源码介绍: 1.MatlabR2018b及以上版本一键运行; 2.具有良好的编程习惯,程序均包含简要注释。

相关推荐
棒棒的皮皮18 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
大游小游之老游18 小时前
Python中如何实现一个程序运行时,调用另一文件中的函数
python
2501_9418043218 小时前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch18 小时前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
Swift社区18 小时前
LeetCode 465 最优账单平衡
算法·leetcode·职场和发展
不会c嘎嘎18 小时前
QT中的常用控件 (二)
开发语言·qt
聆风吟º18 小时前
【数据结构手札】空间复杂度详解:概念 | 习题
java·数据结构·算法
weixin_4450547218 小时前
力扣热题51
c++·python·算法·leetcode
档案宝档案管理18 小时前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
是一个Bug18 小时前
50道核心JVM面试题
java·开发语言·面试