【机器学习】20. RNN - Recurrent Neural Networks 和 LSTM

1. RNN定义

  • 用于顺序数据

  • 文本数据是序列数据的一个例子

  • 句子是单词的序列------一个单词接另一个单词

  • 每个句子可能有不同数量的单词(长度可变)

  • 每个句子之间可能有长距离的依赖关系

  • rnn可以记住序列中较早的相关信息

  • RNN在每个时间点取序列中的1个元素。

  • 神经元在某一个时间点的输出,在下一个时间点(或另一个时间点)反馈给同一神经元

  • 结果:RNN对过去的激活有记忆(因此过去的输入促成了这些激活)

  • RNN可以捕获长距离依赖->对序列有用

2. 简单RNN

简单RNN含有由1个隐藏层构成的前馈神经网络, 这个隐藏层特别的, 含有一个记忆缓存, 会存储隐藏层之前一个时间步的状态. 在每一个时间步, 记忆缓存中的数据会和下一组输入结合作为隐藏层神经元的下一次输入.

  • unroll 图

图片来源:https://blog.csdn.net/v_JULY_v/article/details/89894058

RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步。

在递归神经网络中,获得小梯度更新的层会停止学习------ 那些通常是较早的层。 由于这些层不学习,RNN会忘记它在较长序列中以前看到的内容,因此RNN只具有短时记忆。

在反向传播过程中, 误差梯度会在每个时间步中与w_hh 多次相乘, 如果这些权重过小, 这种多次相乘会导致梯度逐渐变得非常小, 最终几乎消失

而梯度爆炸则是因为计算的难度越来越复杂导致。

LSTM,可以在一定程度上解决梯度消失和梯度爆炸这两个问题

3. LSTM

4张图,直接了解完LSTM

3.1. 忘记门

忘记门会读取上一个输出h_{t-1}和当前输入x_{t},做一个Sigmoid 的非线性映射,然后输出一个向量f_{t}

3.2. 输入门

3.3 细胞状态

3.4. 输出门

C 是细胞状态

相关推荐
Elastic 中国社区官方博客1 分钟前
ES|QL 在 9.2:智能查找连接和时间序列支持
大数据·数据库·人工智能·sql·elasticsearch·搜索引擎·全文检索
齐齐大魔王7 分钟前
深度学习(三)
人工智能·深度学习
Pluchon15 分钟前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
一个帅气昵称啊17 分钟前
Net AI智能体开源框架NetCoreKevin为企业AI智能体系统Saas信息化建设赋能-开启智能应用的无限可能
人工智能·开源
yzx99101323 分钟前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
路边草随风33 分钟前
python 调用 spring ai sse mcp
人工智能·python·spring
菜鸟233号37 分钟前
力扣347. 前k个高频元素 java实现
算法
深圳市快瞳科技有限公司1 小时前
宠物识别算法在AI摄像头的应用实践:从多宠识别到行为分析
人工智能·智能硬件·宠物
ziwu1 小时前
【鱼类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
小马爱打代码1 小时前
Spring AI:ChatMemory 实现聊天记忆功能
java·人工智能·spring