【机器学习】25. 聚类-DBSCAN(density base)

聚类-DBSCAN-density base

  • [1. 介绍](#1. 介绍)
  • [2. 实现](#2. 实现)
  • [3. K-dist](#3. K-dist)
  • [4. 变化密度](#4. 变化密度)
  • [5. 优缺点](#5. 优缺点)

1. 介绍

DBSCAN -- Density-Based Spatial Clustering of Applications with Noise

与K-Means查找圆形簇相比,DBSCAN可以查找任意形状和复杂形状的簇,如S形、椭圆、半圆

适合处理带有噪声的复杂数据集. DBSCAN将高密度区域识别为一个簇, 并把低密度区域视为簇和簇之间的分割. 噪声点通常位于低密度区域, 被排除在簇之外.

不同于K-means只能找圆形的簇, DBSCAN能找任意复杂形状的簇, 如S形, 半圆形...

2. 实现

在给定的数据集中,根据每个数据点周围其他数据点的密度情况,将数据点分为核心点、边界点和噪声点。

  • 核心点 core point 是周围某个半径内有足够多其他数据点的数据点;
  • 边界点 border point 是不满足核心点要求,但在某个核心点的半径内的数据点;
  • 噪声点 noise point 则是不满足任何条件的点。

接着,从核心点开始,通过密度相连的数据点不断扩张,形成一个簇。

一个点的密度取决于半径Eps. 如果:

Eps太大: 所有的点都会有一个较大的密度m,m是数据集中所有的点的数量

Eps太小: 所有的点的密度都等于1, 即只有一个自身

具体实现步骤为

  1. 将数据点标注为核心点, 边界点, 噪声点
  2. 抛弃噪声点
  3. 将剩余的点根据如下方式聚类:
  • 任何两个核心点, 若各自在对方的Eps内, 则属于同一个簇
  • 任何的边界点都放在与其相关联的核心点所属的簇中. 若边界点同时和多个核心点相关联, 需要解决冲突

案例计算

Eps = 1

MinPts = 2

  1. 找每个点eps范围内的点
    A : AB
    B: AB
    C: C
    D: DE
    E: ED

2.根据MinPts找到core point, border point 和noise point

Core point: A,B,D,E

border point: 0

noise point: C

  1. 找到类 AB,DE

3. K-dist

不同的Eps和MinPts可能会对结果产生很大影响.

可以使用k-距离, k-dist来选取适当的Eps和MinPts.

计算每个点到第k个最近邻居的距离,属于某个cluster的点,k-dist会比较小,对与不属于任何cluster的点,如噪声点,则k-dist比较大。在这个图中,拐点是比较合适的。

在 k-距离图(k-distance graph)中,X 轴和 Y 轴表示以下内容:

X 轴(点的索引):数据集中所有点按与其第 k 个最近邻的距离值从小到大排序后的索引。这些点可以按顺序编号,例如从 1 到数据集中点的总数。

Y 轴(k-距离):每个点与其第 k 个最近邻的距离,通常记为 k-距离值。这个值表示该点到数据集中第 k 近邻点的距离。Y 轴的值越大,表示点的密度越低,反之则表示密度较高。

4. 变化密度

DBSCAN无法很好处理密度不同的cluster

5. 优缺点

优点:

  • 可以形成任意形状和大小的簇
  • 不需要实现指定簇的数量
  • 对噪声具有鲁棒性

缺点:

  • 不适合密度差异较大的数据
  • 不适合高维数据
  • 对输入参数Eps和MinPts敏感
    -Eps和MinPts选择通常不是直观的, 需要通过一些启发方法

时间复杂度n^2

空间复杂度n

相关推荐
Dev7z1 小时前
基于MATLAB数学形态学的边缘检测算法仿真实现
算法·计算机视觉·matlab
CareyWYR4 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信6 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20096 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟6 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播7 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训7 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹7 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
风筝在晴天搁浅7 小时前
代码随想录 718.最长重复子数组
算法
kyle~8 小时前
算法---回溯算法
算法