局部加权回归

2. 局部加权回归 (Loess / Lowess)

局部加权回归是一种非参数回归方法,可以自适应地拟合数据的弧度。它对每个点应用加权回归,以根据数据的局部趋势产生一条平滑曲线。这种方法特别适合捕捉数据中较小的曲率变化。

  • 优点:能够很好地拟合微小的非线性变化,不需要指定多项式的次数。
  • 缺点:计算量较大,不适合处理特别大的数据集,且局部加权回归的结果缺乏全局方程,因此解释性可能稍弱。

局部加权回归(Lowess 或 Loess)是一种非参数方法,它能够捕捉数据中的局部非线性趋势,适合于观察数据的平滑变化。我们可以使用 statsmodels 库中的 lowess 函数来实现。以下代码示例展示了如何使用 Lowess 对数据进行回归,并绘制回归曲线及其置信区间。

代码示例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.nonparametric.smoothers_lowess import lowess
from sklearn.utils import resample

# 生成一些带有轻微非线性趋势的样本数据
np.random.seed(42)
x = np.linspace(0, 10, 100)
y = np.sin(x) + 0.3 * x + np.random.normal(0, 0.2, size=x.shape)

# 使用 Lowess 进行局部加权回归
frac = 0.3  # 平滑参数,决定窗口大小,数值越小平滑度越低
lowess_result = lowess(y, x, frac=frac)

# 获取拟合的 y 值
y_pred = lowess_result[:, 1]

# 使用 Bootstrap 方法计算置信区间
n_bootstraps = 200
y_pred_bootstrap = []

for _ in range(n_bootstraps):
    # 随机采样并计算 Lowess 拟合
    x_boot, y_boot = resample(x, y)
    lowess_boot = lowess(y_boot, x_boot, frac=frac)
    
    # 将拟合值插值到原始 x 上
    y_pred_interpolated = np.interp(x, lowess_boot[:, 0], lowess_boot[:, 1])
    y_pred_bootstrap.append(y_pred_interpolated)

# 将预测结果转换为数组
y_pred_bootstrap = np.array(y_pred_bootstrap)

# 计算置信区间
lower_bound = np.percentile(y_pred_bootstrap, 2.5, axis=0)
upper_bound = np.percentile(y_pred_bootstrap, 97.5, axis=0)

# 绘制散点图、回归曲线和置信区间
plt.figure(figsize=(10, 6))
plt.scatter(x, y, color='gray', label='Data Points')
plt.plot(x, y_pred, color='blue', label='Lowess Regression')
plt.fill_between(x, lower_bound, upper_bound, color='lightblue', alpha=0.5, label='95% Confidence Interval')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Lowess Regression with 95% Confidence Interval')
plt.legend()
plt.show()

代码说明

  1. 数据生成 :生成带有非线性趋势的样本数据 y = sin ⁡ ( x ) + 0.3 × x + noise y = \sin(x) + 0.3 \times x + \text{noise} y=sin(x)+0.3×x+noise。
  2. Lowess 拟合 :使用 statsmodels.nonparametric.smoothers_lowess.lowess 函数,设置 frac 参数来控制平滑度。较小的 frac 值会产生更局部化的拟合,适合较快变化的非线性数据。
  3. Bootstrap 置信区间 :通过引导法 (Bootstrap) 生成 200 组不同的样本集,对每组样本进行 Lowess 回归拟合。然后使用 np.interp 将每组拟合值插值到原始 x 位置,以便计算置信区间。
  4. 置信区间计算:对所有拟合样本的结果,取 2.5 和 97.5 百分位数,得到 95% 的置信区间。
  5. 绘图:绘制数据点、Lowess 回归曲线和置信区间。

输出图形


执行代码后将生成如下内容:

  • 灰色散点图:展示原始数据点分布。
  • 蓝色的 Lowess 回归曲线:平滑的局部加权回归结果。
  • 淡蓝色置信区间:基于 Bootstrap 生成的 95% 置信区间。
相关推荐
阿正的梦工坊几秒前
二次预训练与微调的区别
人工智能·深度学习·机器学习·大模型·llm
小宇的天下10 分钟前
Calibre eqDRC(方程化 DRC)核心技术解析与实战指南(14-2)
人工智能·机器学习·支持向量机
qunaa010110 分钟前
YOLO13-C3k2-RFCBAMConv:基于改进卷积的显卡型号识别与分类技术详解
人工智能·数据挖掘
周杰伦fans14 分钟前
BIM(建筑信息模型)不仅仅是一项技术
人工智能
seasonsyy18 分钟前
再说机器学习与深度学习的关系
人工智能·深度学习·机器学习
饼干,20 分钟前
期末考试3
开发语言·人工智能·python
乾元21 分钟前
AI 在 BGP 池管理与路由安全(RPKI / ROA)中的自动化运用——服务提供商网络中“可验证路由”的工程化实现
运维·服务器·网络·人工智能·网络协议·安全·自动化
视觉&物联智能22 分钟前
【杂谈】-AGI的皇帝新衣:OpenAI商业模式能否抵御开源模型冲击?
人工智能·ai·开源·openai·agi·deepseek
jackylzh23 分钟前
数据集标签文件转换方法--将 XML 文件类型转化为 TXT 文件类型
人工智能·python·深度学习
小程故事多_8024 分钟前
Manus AI技术架构深度解析,CPU与GPU的异构协作革命
人工智能·架构·aigc