【Python】【数据可视化】【商务智能方法与应用】课程 作业一 飞桨AI Studio

作业说明

程序运行和题目图形相同可得90分,图形显示有所变化,美观清晰可适当加分。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np


x = np.linspace(0, 1, 100)
y1 = x**2
y2 = x**4

plt.figure(figsize=(8, 6))

# y=x^2
plt.plot(x, y1, '-.', label='y=x^2', color='blue')
# y=x^4
plt.plot(x, y2, '--', label='y=x^4', color='pink')

# 添加标题和轴标签
plt.title('lines')
plt.xlabel('x')
plt.ylabel('y')

plt.legend()
plt.show()

实验总结

本次实验的核心目标是通过Python的matplotlib库来绘制并比较两个基本函数:y=x2y=x2 和 y=x4y=x4。通过这个实验,我们不仅加深了对这两个函数特性的理解,也熟悉了matplotlib库的基本使用方法,包括数据的生成、图形的绘制、颜色和线型的设置、图例的添加等。

实验过程

实验开始时,我们首先导入了必要的库:numpy和matplotlib.pyplot。numpy库用于生成等间距的数据点,而matplotlib.pyplot则用于绘制图形。我们使用np.linspace函数生成了0到1之间的100个等间距数据点,这些数据点作为x轴的值。随后,我们计算了对应的y=x2y=x2和y=x4y=x4的值,分别存储在y1y2变量中。

在绘制图形时,我们使用了plt.plot函数,其中'-.''--'分别指定了线型为点划线和虚线,color='blue'color='pink'则分别设置了两种颜色。通过这些设置,我们可以清晰地区分两个函数的图形。此外,我们还添加了图例,使得图形更加易于理解。

实验结果

通过实验,我们得到了两个函数的图形,它们在同一个坐标系中被绘制出来,使得我们可以直观地比较它们的形状和趋势。y=x2y=x2的图形是一个开口向上的抛物线,而y=x4y=x4的图形则更加陡峭,显示出随着x值的增加,y值增长得更快。这种差异反映了四次方函数相对于平方函数的增长速度更快。

参数调整

在实验中,我们还尝试调整了参数,比如改变线型、颜色、图例位置等,以观察这些变化如何影响图形的显示效果。这些调整不仅让我们对matplotlib的功能有了更深的认识,也让我们了解到在实际应用中如何根据不同的需求来定制图形。

实验意义

通过本次实验,我们不仅掌握了使用matplotlib绘制基本函数图形的技能,也加深了对函数特性的理解。这种技能在数据分析、科学研究和工程领域中非常重要,因为它可以帮助我们直观地展示和比较不同数据集或模型的行为。此外,实验也锻炼了我们的问题解决能力,因为我们需要根据实验要求调整代码,以达到预期的图形效果。

结论

总的来说,本次实验是一次成功的实践,它不仅提高了我们的编程技能,也加深了我们对数学函数的理解。在未来的学习中,我们可以将这些技能应用到更复杂的数据分析和图形绘制任务中,以解决更复杂的问题。

相关推荐
xiaoxiaoxiaolll11 分钟前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师17 分钟前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客3 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei3 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910133 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享4 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生244 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
张子夜 iiii5 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉
UWA5 小时前
Gears实测室:第一期·音游跨设备性能表现与工具价值实践
信息可视化·性能优化·游戏开发·uwa
静西子6 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理