了解神经网络中的激活函数

一、激活函数的特征

  1. 非线性,激活函数必须是非线性函数。
  2. 可微性,训练网络模型时,基于梯度的模型最优化方法要求激活函数必须是可导的。
  3. 单调性,单调递增或单调递减,单调函数保证模型的简单。
  4. 隐藏层一般需要使用激活函数已引入非线性,输入层不需要。输出层如果是回归问题也是不需要的,如果是多分类问题,使用softmax函数将输出转化为概率分布,如果是二分类问题,可以使用sigmoid函数。

二、常见的激活函数

  1. sigmoid函数

    sigmoid激活函数: f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+e−x1,其导数为: f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f'(x)=f(x)(1-f(x)) f′(x)=f(x)(1−f(x)),导数的取值范围[0, 1/4],sigmoid在使用反向传播来训练神经网络时,会产生梯度消失的问题,另外sigmoid处理后的输出数据是一个非负值,在反向传播过程中会增加梯度的不稳定性。

  2. tanh函数

    tanh激活函数: f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+e−xex−e−x,其导数为: f ′ ( x ) = 1 − f ( x ) 2 f'(x)=1-f(x)^2 f′(x)=1−f(x)2,导数的取值范围为[0, 1],反向传播过程中衰减速度比sigmoid要慢,经过tanh激活函数处理后的输出均值约为0(这相当于做了归一化),所以tanh比sigmoid具有更稳定的梯度,但是依然无法避免梯度消失的问题。

  3. 近似生物神经元的激活函数

    如ReLU,softplus等,还有Leaky ReLU,ELU,Softmax等。

三、常见的神经网络模型

神经网络类型 主要特点 典型应用场景
前馈神经网络 信息单向流动,无反馈循环;层级结构清晰;常用于分类和回归问题 图像分类、文本分类、回归预测
反馈神经网络(RNN) 信息可以在网络中循环传播,具有记忆能力;适用于序列数据 自然语言处理(机器翻译、情感分析)、语音识别、时间序列预测
卷积神经网络(CNN) 利用卷积核提取局部特征,适用于图像、视频等数据 图像分类、目标检测、图像分割
循环神经网络变种(LSTM、GRU) 改进RNN,解决了长期依赖问题,更好地处理长序列数据 自然语言处理、语音识别
生成对抗网络(GAN) 由生成器和判别器组成,通过对抗学习生成新的数据 图像生成、数据增强
图神经网络(GNN) 处理图结构数据,适用于社交网络、分子结构等 社交网络分析、药物发现
相关推荐
TextIn智能文档云平台2 分钟前
LLM 文档处理:如何让 AI 更好地理解中文 PDF 中的复杂格式?
人工智能·pdf
Blossom.1184 分钟前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
takashi_void15 分钟前
本地实现斯坦福小镇(利用大语言模型使虚拟角色自主发展剧情)类似项目“Microverse”
人工智能·语言模型·自然语言处理·godot·游戏程序·斯坦福小镇
java1234_小锋33 分钟前
TensorFlow2 Python深度学习 - 循环神经网络(LSTM)示例
python·rnn·深度学习·tensorflow2
zxsz_com_cn42 分钟前
设备健康管理大数据平台:工业智能化的核心数据引擎
运维·人工智能
算家计算1 小时前
破5亿用户!国产AI模型成功逆袭,成为AI普及浪潮主角
人工智能·开源·资讯
Jolie_Liang1 小时前
国内金融领域元宇宙金融特殊需求与技术挑战研究报告
人工智能·元宇宙
算家计算1 小时前
SAIL-VL2本地部署教程:2B/8B参数媲美大规模模型,为轻量级设备量身打造的多模态大脑
人工智能·开源·aigc
Costrict1 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
姚家湾1 小时前
MAC mini /绿联NAS 上安装本地AFFiNE
人工智能·affine