Pytorch猴痘病识别

Pytorch猴痘病识别

电脑系统:Windows11

显卡型号:NVIDIA Quadro P620

语言环境:python 3.9.7

编译器:jupyter notebook

深度学习环境:2.17.0

一、前期准备

设定GPU

导入数据

划分数据集

二、构建简单的CNN网络

三、训练模型

编写测试函数

正式训练

四、结果可视化

Loss与Accuracy图

指定图片进行预测

五、保存

六、总结

一、前期准备

  1. 设置GPU

    • 确保你有适当的环境配置以利用GPU(如CUDA和cuDNN)。
    • 验证CUDA设备是否可用,以确保代码能够高效运行在GPU上。
  2. 导入数据

    • 确保数据路径正确,且数据格式和内容符合预期。
    • 处理任何缺失值或异常数值,以免影响模型训练。
    • 考虑数据增强技术以增加训练样本的多样性,减少过拟合。
  3. 划分数据集

    • 按照合理的比例划分数据集(如80%训练集,10%验证集,10%测试集)。
    • 确保数据划分的随机性和多样性,避免样本偏差。
    • 在划分后,检查各个数据集的标签分布,以确保均衡。

二、构建简单的CNN网络

  • 确保模型架构合理,包含适当的卷积层、激活函数和池化层。
  • 考虑使用正则化技术(如Dropout)减少过拟合。
  • 了解Batch Normalization的用途,以及适合使用的位置。

三、训练模型

  1. 设置超参数

    • 选择合适的学习率,使用学习率调度器以动态地调整学习率。
    • 决定批量大小(Batch Size)时,要兼顾计算效率和内存消耗。
    • 确定训练周期(Epochs),并考虑早停策略来防止过拟合。
  2. 编写训练函数

    • 确保计算损失和梯度的方式正确。
    • 实现训练过程中监控模型性能,以及保存最佳模型状态。
    • 设计优雅的日志记录系统,以便轻松追踪训练过程中的参数。
  3. 编写测试函数

    • 确保测试数据在测试阶段保持完全不见(unseen)以验证模型推广能力。
    • 计算各类评估指标(如准确率、召回率等)以全面评估模型性能。
  4. 正式训练

    • 使用训练集进行模型训练,定期在验证集上评估。
    • 监控训练过程中的Loss和Accuracy变化,识别潜在过拟合情况。
    • 保存定期检查点,以防中断训练导致的损失。

四、结果可视化

  1. Loss与Accuracy图

    • 使用可视化工具(如Matplotlib)绘制Loss与Accuracy曲线,以便可视化模型的收敛情况。
    • 在图中标注关键点(如最佳训练轮次),方便于分析。
  2. 指定图片进行预测

    • 确保预测函数简洁明了,包括对输入数据进行相应预处理。
    • 结果的展示上,要提供清晰的标签和置信度,以帮助用户理解预测结果。

五、保存并加载模型

  • 保存整个模型(结构和权重),确保可以在需要时进行加载。
  • 关注模型的版本管理,确保对不同模型版本的清晰识别。
  • 测试模型加载后是否正常工作,确保没有影响推理时的性能。
相关推荐
用户40315986396632 分钟前
缓存优化模拟
java·算法
用户40315986396632 分钟前
遥控小车
java·算法
PineappleCoder3 分钟前
LLMs:AI时代的“大脑”如何重塑未来?
人工智能
都叫我大帅哥26 分钟前
Python中的Annotated:不只是类型提示的装饰
python
明明跟你说过28 分钟前
Grok 系列大模型:xAI 的智能宇宙探秘
人工智能·语言模型·自然语言处理
羑悻的小杀马特44 分钟前
从混沌到秩序:数据科学的热力学第二定律破局——线性回归的熵减模型 × 最小二乘的能量最小化 × 梯度下降的负反馈控制系统,用物理定律重构智能算法的统一场论
人工智能·算法·机器学习
义薄云天us44 分钟前
027_国际化与本地化
人工智能·后端·restful·claude code
abort();1 小时前
Iterable:一个容易被忽视的Python编码细节
python
MC皮蛋侠客1 小时前
Python与MongoDB深度整合:异步操作与GridFS实战指南
开发语言·python·mongodb
这里有鱼汤1 小时前
Python菜鸟如何用AI写出高质量代码?这6招我亲测有效!
后端·python