基于卷积神经网络(CNN)的时间序列预测,15个输入1个输出,可以更改数据集,MATLAB代码

1. 数据收集与预处理

  • 数据清洗:处理缺失值、异常值等。
  • 特征工程:提取有助于预测的特征。
  • 数据标准化:将时间序列数据标准化,使其具有零均值和单位方差,有助于模型训练。
  • 滑动窗口划分:将时间序列数据划分为多个滑动窗口,每个窗口包含15个历史时间点的数据值,用于预测下一个时间点的值。
  • 数据集中部分数据如下:
bash 复制代码
0.491920000000000	0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000
0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000
0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000
0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000
0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000
0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000
0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000
0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000
0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000
0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000
0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000
0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000
0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000
0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000
0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000	0.560440000000000

2. 设计CNN模型

  • 确定输入输出:确定模型的输入(历史时间点的数量)和输出(预测的时间点数量)。
  • 构建卷积层:使用一维卷积层(Conv1D)来提取时间序列数据的特征。
  • 添加池化层:使用池化层(如MaxPooling1D)来降低特征维度,提高模型的泛化能力。
  • 添加全连接层 :在卷积和池化层之后添加全连接层(Dense),用于学习特征的组合并输出预测结果。

3. 编译模型

  • 选择损失函数:对于回归问题,通常使用均方误差(MSE)作为损失函数。
  • 选择优化器:常用的优化器包括Adam、SGD等。
  • 选择评估指标:常用的评估指标包括均方根误差(RMSE)。

4. 训练模型

  • 划分数据集:将数据集划分为训练集、验证集和测试集。
  • 模型训练:使用训练集数据训练模型,并在验证集上进行模型评估,以防止过拟合。
  • 超参数调优 :调整模型的超参数,如卷积核大小、卷积层数量、学习率等,以获得更好的性能。

5. 模型评估与测试

  • 评估模型:在测试集上评估模型的性能,使用RMSE等指标。
  • 结果分析:分析模型预测结果与实际值之间的差异,评估模型的准确性和泛化能力。


6. 部分MATLAB示例

bash 复制代码
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

7. 完整MATLAB代码见下方名片

相关推荐
Swift社区29 分钟前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
秀儿还能再秀34 分钟前
神经网络(系统性学习三):多层感知机(MLP)
神经网络·学习笔记·mlp·多层感知机
Kent_J_Truman1 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年2 小时前
数据结构 (1)基本概念和术语
数据结构·算法
ZHOU_WUYI2 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
Dong雨2 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
如若1232 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
SoraLuna2 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie
老艾的AI世界2 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221512 小时前
机器学习系列----关联分析
人工智能·机器学习