大语言模型工作原理笔记

大语言模型工作原理笔记

一、词向量:表示语言的方式

  • 大语言模型使用词向量来表示单词,每个词向量是由一串数字组成的列表,代表词空间中的一个点。
  • 词空间中,含义相近的词位置更接近,例如"猫"的词向量会靠近"狗"、"小猫"等词向量。
  • 词向量的好处 :
    • 可以进行数值运算,例如"最大" - "大" + "小" = "最小"。
    • 能够捕捉词语之间的微妙关系,例如"瑞士人"与"瑞士"的关系类似于"柬埔寨人"与"柬埔寨"的关系。
    • 可以根据上下文用不同的向量来表示同一个词,解决多义词问题,例如"银行"可以指金融机构或河岸。

二、Transformer:大语言模型的基石

  • Transformer是一种神经网络结构,由多个层组成,每层都接收一系列词向量作为输入,并添加信息以更好地预测下一个词。
  • Transformer 的两个核心处理过程:
    • 注意力机制: 词汇会观察周围,寻找具有相关背景并彼此共享信息的词,并通过查询和关键项链的匹配来传递信息。
    • 潜会层: 每个词会思考之前注意力步骤中收集到的信息,并尝试预测下一个词。
  • 注意力机制 :
    • 可以将其视为单词之间的"撮合服务",每个词会制作查询和关键项链来描述自己和寻找的词,并通过比较找到最佳匹配的词。
    • 拥有注意力头,每个注意力头专注于不同的任务,例如匹配代词和名词、解析多义词等。
  • 潜会层 :
    • 可以访问注意力头提供的上下文信息,并通过模式匹配来预测下一个词。
    • 早期层倾向于匹配特定单词,后期层则匹配更广泛类别的短语。
    • 可以通过向量运算进行推理,例如将国家转化为首都。
  • 注意力机制和潜会层的分工:注意力机制从提示中检索信息,而潜会层让语言模型记住未在提示中出现的信息。

三、训练:让模型学习语言

  • 大语言模型通过预测文本段落中的下一个词来学习,不需要人工标记数据。
  • 训练过程:
    1. 前向传播: 输入文本,检查模型预测的下一个词是否正确。
    2. 反向传播: 根据预测结果调整模型的权重参数,使模型做出更好的预测。
  • 训练需要大量的数据和计算资源,例如 GPT-3 在 5000 亿个单词的语料库上进行训练,需要运行数月才能完成。

四、模型规模与能力:越大越好

  • 研究表明,模型规模越大,在语言任务上的表现越好。
  • 模型规模的增大带来了更强的推理能力,例如 GPT-3 在心智理论任务上的表现接近人类儿童。

五、结论

大语言模型通过学习大量文本数据,能够以惊人的准确度预测下一个词,并展现出一定的推理能力。虽然其内部工作机制尚未被完全理解,但其强大的能力和潜力已不容忽视。

相关推荐
矢量赛奇8 分钟前
比ChatGPT更酷的AI工具
人工智能·ai·ai写作·视频
KuaFuAI17 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic26 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI30 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海33 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah34 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d38 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录41 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc1 小时前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind1 小时前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉