量化交易系统开发-实时行情自动化交易-3.3.数据采集流程

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。

接下来说说数据采集流程,后面也会给出一些代码的示例。

数据采集流程是自动化交易系统中将数据源连接到策略执行的桥梁,通过科学有效的采集流程,确保采集到的数据既符合实时性要求,也具备准确性和稳定性。数据采集流程主要包括连接建立、数据订阅、数据处理与存储,以及错误处理和重连机制。以下是数据采集流程的详细扩展。

3.3.1 连接建立

数据采集的第一步是与交易所或第三方数据供应商的 API 建立连接。连接的建立方式取决于数据采集的具体需求:

  • REST API 连接:在使用 REST API 进行数据采集时,系统需要通过周期性的 HTTP 请求获取数据,例如通过 GET 请求来获取最新的行情数据和订单簿信息。在建立连接时,需要初始化必要的 API 密钥、设置请求的 URL 和参数。为了避免触发交易所的频率限制,系统应设计好合理的调用频率,通常采用轮询机制定期请求。

  • WebSocket 长连接:对于需要实时数据的采集场景,如订单深度、成交明细等,系统会与交易所的 WebSocket 建立长连接。通过 WebSocket,系统可以与交易所建立持久化连接,交易所会主动向客户端推送数据,以实现实时性。连接建立时,需要进行握手验证,并根据策略的需求订阅相应的数据频道。例如,可以订阅某个交易对的价格变动、订单深度、成交记录等。

为了保证连接的安全和稳定,系统还需要进行身份验证和加密通信,尤其是在使用第三方供应商的数据时,通常会涉及到 API 密钥、令牌等认证方式。

3.3.2 数据订阅

在建立连接后,下一步是根据策略的需求订阅特定的数据类型。订阅的内容可以是多种类型的市场数据,具体包括:

  • K线数据(OHLCV):系统可以订阅不同时间周期的 K 线数据,例如 1 分钟、5 分钟、15 分钟、日线等。这些数据用于策略分析市场趋势。

  • 订单深度:对于高频交易和做市策略,订单深度的数据非常重要。系统可以订阅买一到买 N 和卖一到卖 N 的价格和数量信息,以实时了解市场流动性和买卖力量。

  • 成交记录(Trade Ticks):订阅每笔成交的详细信息,包括成交价格、数量和时间。成交记录可以用来捕捉市场情绪,判断市场的买卖力量变化。

  • 行情数据(Ticker):包括某个交易对的最新成交价格、最高价、最低价、24 小时交易量等,用于策略进行实时行情跟踪和判断。

在订阅数据时,需要合理规划订阅的内容,以避免不必要的数据负载导致的系统性能问题。尤其在高频交易中,只订阅必要的数据有助于降低系统的延迟。

3.3.3 数据处理与存储

采集到的数据往往是原始的,需要进行处理后才能用于策略执行和分析。数据处理包括格式转换、数据清洗、去重、数据修正等多个步骤:

  • 格式转换:交易所或数据供应商返回的数据通常是 JSON 格式的,需要将这些数据转换为系统内部使用的结构化格式。例如,将行情数据解析为 Python 的字典对象,方便后续的处理和存储。

  • 数据清洗:在获取数据的过程中,可能会遇到数据异常或错误的情况,如缺失值、重复数据等。数据清洗步骤通过对数据的校验和修复,保证数据的质量。比如,对于缺失的数据可以使用插值法补全,对于重复的数据进行去重。

  • 数据修正:有时交易所的数据可能存在误差,例如价格的剧烈跳动或错误的数据点,这些可能是由于交易所的故障或网络延迟造成的。数据修正步骤可以过滤掉这些明显异常的数据点,以提高策略的稳定性。

处理完的数据需要保存到内存或数据库中:

  • 内存缓存:对于实时性要求高的数据(如最新行情和订单簿),通常会保存在内存中,以便快速访问。可以使用诸如 Redis 这样的内存数据库来存储实时数据,保证低延迟的读写。

  • 本地存储:历史数据和需要持久化的数据会保存到本地数据库中,例如使用 MySQL、PostgreSQL 等关系型数据库,或使用 MongoDB 等 NoSQL 数据库。历史数据的存储对于策略回测和优化非常重要。

3.3.4 数据校验与同步

为了确保数据的准确性,数据采集流程中需要加入数据校验和同步机制:

  • 实时数据校验:通过从多个数据源采集同一市场的行情数据进行对比,确保数据的一致性。例如,如果系统从两个交易所同时获取 BTC/USDT 的价格数据,并发现数据之间存在较大偏差,则需要对数据进行进一步的核查或发出警报。

  • 定期数据同步:对于历史数据,系统可以定期从交易所 API 获取完整的数据集,以与本地存储的数据进行比对,发现并补充遗漏的数据,保证历史数据的完整性。这在策略回测中尤为重要,因为历史数据的缺失或错误会直接影响策略的评估结果。

3.3.5 错误处理与重连机制

在数据采集过程中,错误处理与重连机制是保证系统稳定性和连续性的重要部分。由于网络波动、交易所服务器故障、API 限制等原因,数据采集过程中可能会发生连接中断或请求失败的情况:

  • 网络连接错误处理:当 REST API 请求失败时,系统应尝试进行多次重试,并设置合理的重试间隔以避免频繁请求导致 IP 被封禁。例如,可以采用指数退避策略逐步增加重试时间间隔,以提高重试的成功率。

  • WebSocket 重连机制:在 WebSocket 连接断开后,系统需要及时尝试重新连接。为了防止频繁的重连导致服务器压力过大,可以设置逐渐增加的重连时间间隔,或在多次重连失败后切换到备用的数据源。系统应同时保存当前的数据订阅状态,确保在重连后能够自动恢复之前的订阅内容。

  • API 限流处理:在使用 REST API 时,如果由于请求过于频繁而触发交易所的限流机制,应降低请求频率并等待一段时间后再尝试。系统可以设计一个限流队列,将需要请求的数据排队处理,以避免请求超出限制。

3.3.6 日志记录与分析

为了保证数据采集流程的透明性和可维护性,需要对整个数据采集过程进行日志记录:

  • 连接日志:记录每次 API 连接的建立和断开情况,包括连接时间、连接成功或失败的原因等。如果发生连接问题,日志能够帮助开发者快速定位问题所在。

  • 数据日志:记录每次获取的数据内容、数据处理的结果、数据异常的处理情况等。对于清洗或修正的数据,日志中应注明具体的修正内容,以便后续进行数据审计和分析。

  • 错误日志:记录采集过程中发生的错误,包括网络故障、API 调用失败、数据异常等。错误日志对于提高系统的健壮性和调试系统问题非常重要。

这些日志不仅用于实时监控系统的运行状态,还可以用于后续的性能分析和系统优化,帮助开发者了解数据采集的瓶颈,并进行有针对性的改进。

3.3.7 数据采集流程的优化

为了提高数据采集流程的效率和稳定性,可以从以下方面进行优化:

  • 并行与异步处理 :为了提高数据采集的效率,系统可以采用并行或异步的方式进行多线程数据采集。例如,使用 Python 的 asyncio 库来异步请求多个交易对的数据,减少等待时间,从而提高整体的采集效率。

  • 分布式采集架构:对于需要采集大量数据的场景,可以设计分布式的采集架构,将不同的数据采集任务分配到不同的服务器上,降低单个节点的压力,提高系统的可扩展性。

  • 数据压缩与缓存:对于实时数据,可以使用内存缓存机制来加速数据的读取速度,同时对于长时间未变动的数据可以进行压缩,减少存储空间和网络带宽的占用。

相关推荐
冷眼看人间恩怨9 分钟前
【话题讨论】AI赋能电商:创新应用与销售效率的双轮驱动
人工智能·ai·电商
时雨h19 分钟前
计算机能力挑战赛java 2019真题解析
java·开发语言·python
irisMoon0620 分钟前
python视频事物分析
开发语言·python
Liknana23 分钟前
python 网页数据解析
开发语言·python·算法
Elastic 中国社区官方博客23 分钟前
Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Ramos_zl31 分钟前
Knowledge Graph-Enhanced Large Language Models via Path Selection
人工智能
热爱生活的五柒32 分钟前
深度学习:利用随机数据更快地测试一个新的模型在自己数据格式很复杂的时候
人工智能·深度学习
时也-K37 分钟前
Python基础(一)
开发语言·python
科研实践课堂(公众号名称)42 分钟前
基于OpenFOAM和深度学习驱动的流体力学计算与应用
人工智能·深度学习
qzhqbb42 分钟前
机器学习小补充(加深理解)
人工智能·机器学习