Pytorch学习--神经网络--完整的模型验证套路

一、选取的图片

全部代码依托于该博客

二、代码(调用训练好的模型)

python 复制代码
import torch
import torchvision
from PIL import Image
from model import *

img_path = "dog.png"
image = Image.open(img_path)

print(image.size)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

print(image.shape)

#更换pth文件
model = torch.load('model.pth', map_location=torch.device('cpu'))
print(model)

model.eval()
with torch.no_grad():
    output = model(image)
print(output.shape)
print(output)
print(torch.argmax(output,dim=1))

输出:

python 复制代码
(287, 251)
torch.Size([1, 3, 32, 32])
Mary(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([1, 10])
tensor([[-2.9548, -3.5498,  0.3010,  3.4690, -0.8843,  4.8731,  2.5652, -0.5132,
         -1.0659, -2.9456]])
tensor([5])

模型预测的图片类别为 5 ,可以看到模型预测的结果是正确的

相关推荐
程序员三藏1 天前
接口自动化测试框架搭建详解
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
深度学习机器1 天前
RAG的另一种思路,基于文档树结构的推理型检索
人工智能·算法·架构
wangqiaowq1 天前
PAIMON+STARROCKS 学习
学习
skywalk81631 天前
老显卡老cpu用vllm推理大模型失败Intel(R) Xeon(R) CPU E5-2643 v2
人工智能·pytorch·python·vllm
unable code1 天前
攻防世界-Misc-pdf
网络安全·ctf·misc·1024程序员节
深度学习机器1 天前
Agent架构新方向?Claude Skills工作原理解析
人工智能·算法·架构
phoenix09811 天前
ELK企业级日志分析系统学习
学习·elk
新智元1 天前
他发明了价值万亿的 AGI,如今穷困潦倒
人工智能·openai
Baihai_IDP1 天前
怎样为你的 RAG 应用选择合适的嵌入模型?
人工智能·llm·aigc
奋斗的牛马1 天前
FPGA—ZYNQ学习GPIO-EMIO,MIO,AXIGPIO(五)
单片机·嵌入式硬件·学习·fpga开发·信息与通信