Pytorch学习--神经网络--完整的模型验证套路

一、选取的图片

全部代码依托于该博客

二、代码(调用训练好的模型)

python 复制代码
import torch
import torchvision
from PIL import Image
from model import *

img_path = "dog.png"
image = Image.open(img_path)

print(image.size)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

print(image.shape)

#更换pth文件
model = torch.load('model.pth', map_location=torch.device('cpu'))
print(model)

model.eval()
with torch.no_grad():
    output = model(image)
print(output.shape)
print(output)
print(torch.argmax(output,dim=1))

输出:

python 复制代码
(287, 251)
torch.Size([1, 3, 32, 32])
Mary(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([1, 10])
tensor([[-2.9548, -3.5498,  0.3010,  3.4690, -0.8843,  4.8731,  2.5652, -0.5132,
         -1.0659, -2.9456]])
tensor([5])

模型预测的图片类别为 5 ,可以看到模型预测的结果是正确的

相关推荐
秋名山大前端15 分钟前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
集和诚JHCTECH18 分钟前
边缘智能,触手可及|BRAV-7821高能效AI边缘计算系统正式发布
大数据·人工智能·边缘计算
ooo-p39 分钟前
FPGA学习篇——Verilog学习之“呼吸灯”
学习·fpga开发
求真求知的糖葫芦44 分钟前
微波工程4.2节阻抗与导纳矩阵学习(自用)
笔记·学习·线性代数·矩阵·射频工程
新缸中之脑1 小时前
现代开发者的工具箱 (2026)
人工智能
才兄说1 小时前
机器人租售出场准?会卡节点上
人工智能·机器人
救救孩子把1 小时前
64-机器学习与大模型开发数学教程-5-11 本章总结与习题
人工智能·机器学习
救救孩子把1 小时前
55-机器学习与大模型开发数学教程-5-2 梯度下降法(GD)与随机梯度下降(SGD)
人工智能·机器学习
有Li1 小时前
学习通过皮层发育连续性迁移实现全生命周期脑解剖对应/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·机器学习
炽烈小老头1 小时前
【 每天学习一点算法 2026/01/26】缺失数字
学习·算法