Pytorch学习--神经网络--完整的模型验证套路

一、选取的图片

全部代码依托于该博客

二、代码(调用训练好的模型)

python 复制代码
import torch
import torchvision
from PIL import Image
from model import *

img_path = "dog.png"
image = Image.open(img_path)

print(image.size)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

print(image.shape)

#更换pth文件
model = torch.load('model.pth', map_location=torch.device('cpu'))
print(model)

model.eval()
with torch.no_grad():
    output = model(image)
print(output.shape)
print(output)
print(torch.argmax(output,dim=1))

输出:

python 复制代码
(287, 251)
torch.Size([1, 3, 32, 32])
Mary(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([1, 10])
tensor([[-2.9548, -3.5498,  0.3010,  3.4690, -0.8843,  4.8731,  2.5652, -0.5132,
         -1.0659, -2.9456]])
tensor([5])

模型预测的图片类别为 5 ,可以看到模型预测的结果是正确的

相关推荐
CoderYanger几秒前
C.滑动窗口-越长越合法/求最短/最小——2904. 最短且字典序最小的美丽子字符串
java·开发语言·数据结构·算法·leetcode·1024程序员节
新加坡内哥谈技术3 分钟前
OpenAI 因 Google 逼近而宣布“红色警戒”
人工智能
咚咚王者4 分钟前
人工智能之数据分析 Pandas:第三章 DataFrame
人工智能·数据分析·pandas
明月(Alioo)4 分钟前
机器学习入门,微积分之导数概念
人工智能·机器学习
薛定e的猫咪4 分钟前
中国版 ReadmeX + 海外爆款 Zread.ai:两款 AI 工具重构开源项目探索方式,一键解析GitHub项目,生成超详细技术文档。
人工智能·重构·开源
codists5 分钟前
以 Core i9-13900HX 实例讲解CPU概念:物理CPU,内核,逻辑CPU
python
跨境摸鱼6 分钟前
AI 赋能!亚马逊竞争情报的“重构式”升级,破解竞品迷局
人工智能·矩阵·重构·跨境电商·亚马逊·防关联
光头程序员10 分钟前
学习笔记——vite 打包构建优化之tree shaking
笔记·学习
Salt_072816 分钟前
DAY25 奇异值SVD分解
python·算法·机器学习
AI即插即用16 分钟前
即插即用系列 | CVPR 2024 ABC-Attention:基于双线性相关注意力的红外小目标检测
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测