Pytorch学习--神经网络--完整的模型验证套路

一、选取的图片

全部代码依托于该博客

二、代码(调用训练好的模型)

python 复制代码
import torch
import torchvision
from PIL import Image
from model import *

img_path = "dog.png"
image = Image.open(img_path)

print(image.size)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

print(image.shape)

#更换pth文件
model = torch.load('model.pth', map_location=torch.device('cpu'))
print(model)

model.eval()
with torch.no_grad():
    output = model(image)
print(output.shape)
print(output)
print(torch.argmax(output,dim=1))

输出:

python 复制代码
(287, 251)
torch.Size([1, 3, 32, 32])
Mary(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([1, 10])
tensor([[-2.9548, -3.5498,  0.3010,  3.4690, -0.8843,  4.8731,  2.5652, -0.5132,
         -1.0659, -2.9456]])
tensor([5])

模型预测的图片类别为 5 ,可以看到模型预测的结果是正确的

相关推荐
IT古董29 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
冷崖3 小时前
MySQL异步连接池的学习(五)
学习·mysql
知识分享小能手3 小时前
Vue3 学习教程,从入门到精通,Axios 在 Vue 3 中的使用指南(37)
前端·javascript·vue.js·学习·typescript·vue·vue3
lucky_lyovo5 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊7 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue7 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
焄塰7 小时前
Ansible 管理变量和事实
学习·centos·ansible