Pytorch学习--神经网络--完整的模型验证套路

一、选取的图片

全部代码依托于该博客

二、代码(调用训练好的模型)

python 复制代码
import torch
import torchvision
from PIL import Image
from model import *

img_path = "dog.png"
image = Image.open(img_path)

print(image.size)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

print(image.shape)

#更换pth文件
model = torch.load('model.pth', map_location=torch.device('cpu'))
print(model)

model.eval()
with torch.no_grad():
    output = model(image)
print(output.shape)
print(output)
print(torch.argmax(output,dim=1))

输出:

python 复制代码
(287, 251)
torch.Size([1, 3, 32, 32])
Mary(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([1, 10])
tensor([[-2.9548, -3.5498,  0.3010,  3.4690, -0.8843,  4.8731,  2.5652, -0.5132,
         -1.0659, -2.9456]])
tensor([5])

模型预测的图片类别为 5 ,可以看到模型预测的结果是正确的

相关推荐
lili-felicity几秒前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一个有梦有戏的人3 分钟前
Python3基础:进阶基础,筑牢编程底层能力
后端·python
YCY^v^3 分钟前
JeecgBoot 项目运行指南
java·学习
一枕眠秋雨>o<8 分钟前
算子之力:解码CANN ops-nn如何重塑昇腾AI计算范式
人工智能
AI科技9 分钟前
原创音乐人运用AI编曲软件,编曲怎么配和弦的声音
人工智能
云小逸9 分钟前
【nmap源码解析】Nmap OS识别核心模块深度解析:osscan2.cc源码剖析(1)
开发语言·网络·学习·nmap
dazzle11 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵13 分钟前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
凯子坚持 c14 分钟前
CANN 生态新星:`minddata-dataset-engine` 如何加速 AI 数据 pipeline
人工智能
Fairy要carry16 分钟前
面试-GRPO强化学习
开发语言·人工智能