3、PyTorch张量的运算API(下)

文章目录

  • [1. 数值转换](#1. 数值转换)
  • [2. 相关API](#2. 相关API)

1. 数值转换

12.34 = 16# 4145 7074

16# 4145 7074 = 12.34

python 复制代码
import struct


class IEEE754Converter:
    @staticmethod
    def float_to_hex(f):
        """
        将浮点数转换为IEEE 754格式的16进制表示
        """
        binary_representation = struct.pack('>f', f)
        hex_representation = ''.join(f'{byte:02X}' for byte in binary_representation)
        return f"16#{hex_representation}"

    @staticmethod
    def hex_to_float(hex_str):
        """
        将IEEE 754格式的16进制表示转换为浮点数
        """
        if not hex_str.startswith("16#"):
            raise ValueError("输入必须以 '16#' 开头")
        hex_value = hex_str[3:]  # 去掉 "16#"
        if len(hex_value) != 8:
            raise ValueError("无效的16进制格式(需要8位字符)")
        binary_representation = bytes.fromhex(hex_value)
        return struct.unpack('>f', binary_representation)[0]


# 测试
converter = IEEE754Converter()

# 浮点数转16进制
# input_float = 50.8
input_float = 12.34
hex_result = converter.float_to_hex(input_float)
print(f"输入: {input_float}, 转换为: {hex_result}")

# 16进制转浮点数
input_hex = hex_result
float_result = converter.hex_to_float(input_hex)
print(f"输入: {input_hex}, 转换为: {float_result}")
  • 结果:
python 复制代码
输入: 12.34, 转换为: 16#414570A4
输入: 16#414570A4, 转换为: 12.34000015258789

2. 相关API

  • 重点:torch.take,torch.where,torch.randperm
  • python
python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName  :pytorch_learn3.py
# @Time      :2024/11/17 16:08
# @Author    :Jason Zhang
import torch

torch.manual_seed(12232)

if __name__ == "__main__":
    run_code = 0
    test_a = torch.randint(1, 20, (4, 5))
    index_a = torch.randint(1, 10, (1, 10))
    take_a = torch.take(input=test_a, index=index_a)
    print(f"test_a=\n{test_a}")
    print(f"index_a={index_a}")
    print(f"take_a=\n{take_a}")
    test_b = torch.arange(12).reshape(3, 4)
    index_b = [2, 3]
    tile_b = torch.tile(test_b, index_b)
    print(f"test_b=\n{test_b}")
    print(f"index_b=\n{index_b}")
    print(f"tile_b=\n{tile_b}")
    test_c = torch.arange(24).reshape(2, 3, 4)
    transpose_01_c = torch.transpose(test_c, 0, 1)
    transpose_02_c = torch.transpose(test_c, 0, 2)
    transpose_12_c = torch.transpose(test_c, 1, 2)
    print(f"shape={test_c.shape};test_c=\n{test_c}")
    print(f"shape={transpose_01_c.shape};transpose_01_c=\n{transpose_01_c}")
    print(f"transpose01 from {test_c.shape} -->{transpose_01_c.shape}")
    print(f"transpose02 from {test_c.shape} -->{transpose_02_c.shape}")
    print(f"transpose12 from {test_c.shape} -->{transpose_12_c.shape}")
    test_d = torch.arange(12).reshape(3, 4)
    unbind_d0 = torch.unbind(test_d)
    unbind_d1 = torch.unbind(test_d, dim=1)
    print(f"test_d=\n{test_d}")
    print(f"unbind_d0=\n{unbind_d0}")
    print(f"unbind_d1=\n{unbind_d1}")
    test_e = torch.arange(12).reshape(3, 4)
    un_squeeze_d = torch.unsqueeze(test_e, dim=0)
    print(f"test_e=\n{test_e}")
    print(f"un_squeeze_d=\n{un_squeeze_d}")
    print(f"un_squeeze_0 from {test_e.shape} to --> {un_squeeze_d.shape}")
    test_f = torch.randn(3, 4)
    condition_f = torch.zeros_like(test_f)
    where_f = torch.where(test_f > 0, test_f, condition_f)
    print(f"test_f=\n{test_f}")
    print(f"condition_f=\n{condition_f}")
    print(f"where_f=\n{where_f}")
    test_uniform = torch.empty(3, 3).uniform_(0, 1)
    test_bernoulli = torch.bernoulli(test_uniform)
    print(f"test_uniform=\n{test_uniform}")
    print(f"test_bernoulli=\n{test_bernoulli}")
    test_normal = torch.normal(mean=0, std=3, size=(1, 4))
    print(f"test_normal=\n{test_normal}")
    test_rand = torch.rand((3, 4))
    print(f"test_rand=\n{test_rand}")
    test_ones = torch.ones((4, 5))
    test_rand_like = torch.rand_like(test_ones)
    print(f"test_ones=\n{test_ones}")
    print(f"test_rand_like=\n{test_rand_like}")
    test_randint = torch.randint(1, 10, (3, 4))
    print(f"test_randint=\n{test_randint}")
    test_randn = torch.randn((3,4))
    print(f"test_randn=\n{test_randn}")
    test_randperm = torch.randperm(8)
    print(f"test_randperm={test_randperm}")
  • 结果:
python 复制代码
test_a=
tensor([[10, 10, 13,  9, 13],
        [18,  3, 18, 13, 14],
        [12,  3,  2,  6, 15],
        [17, 10,  8,  3, 19]])
index_a=tensor([[3, 8, 1, 3, 4, 7, 3, 4, 3, 9]])
take_a=
tensor([[ 9, 13, 10,  9, 13, 18,  9, 13,  9, 14]])
test_b=
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
index_b=
[2, 3]
tile_b=
tensor([[ 0,  1,  2,  3,  0,  1,  2,  3,  0,  1,  2,  3],
        [ 4,  5,  6,  7,  4,  5,  6,  7,  4,  5,  6,  7],
        [ 8,  9, 10, 11,  8,  9, 10, 11,  8,  9, 10, 11],
        [ 0,  1,  2,  3,  0,  1,  2,  3,  0,  1,  2,  3],
        [ 4,  5,  6,  7,  4,  5,  6,  7,  4,  5,  6,  7],
        [ 8,  9, 10, 11,  8,  9, 10, 11,  8,  9, 10, 11]])
shape=torch.Size([2, 3, 4]);test_c=
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],

        [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]])
shape=torch.Size([3, 2, 4]);transpose_01_c=
tensor([[[ 0,  1,  2,  3],
         [12, 13, 14, 15]],

        [[ 4,  5,  6,  7],
         [16, 17, 18, 19]],

        [[ 8,  9, 10, 11],
         [20, 21, 22, 23]]])
transpose01 from torch.Size([2, 3, 4]) -->torch.Size([3, 2, 4])
transpose02 from torch.Size([2, 3, 4]) -->torch.Size([4, 3, 2])
transpose12 from torch.Size([2, 3, 4]) -->torch.Size([2, 4, 3])
test_d=
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
unbind_d0=
(tensor([0, 1, 2, 3]), tensor([4, 5, 6, 7]), tensor([ 8,  9, 10, 11]))
unbind_d1=
(tensor([0, 4, 8]), tensor([1, 5, 9]), tensor([ 2,  6, 10]), tensor([ 3,  7, 11]))
test_e=
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
un_squeeze_d=
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]]])
un_squeeze_0 from torch.Size([3, 4]) to --> torch.Size([1, 3, 4])
test_f=
tensor([[-1.0091, -1.6478,  0.2227, -0.6253],
        [-1.1560, -0.3321,  0.6481, -0.6534],
        [-0.0812,  0.3430, -0.5654,  1.3285]])
condition_f=
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])
where_f=
tensor([[0.0000, 0.0000, 0.2227, 0.0000],
        [0.0000, 0.0000, 0.6481, 0.0000],
        [0.0000, 0.3430, 0.0000, 1.3285]])
test_uniform=
tensor([[0.8787, 0.1452, 0.5137],
        [0.3538, 0.1417, 0.2804],
        [0.5722, 0.0614, 0.8160]])
test_bernoulli=
tensor([[1., 0., 1.],
        [0., 0., 0.],
        [0., 0., 1.]])
test_normal=
tensor([[ 1.4836,  3.7629, -0.9947,  3.2829]])
test_rand=
tensor([[0.8395, 0.9317, 0.4699, 0.1299],
        [0.6146, 0.6594, 0.6898, 0.4271],
        [0.1025, 0.0930, 0.0631, 0.8740]])
test_ones=
tensor([[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]])
test_rand_like=
tensor([[0.2708, 0.1703, 0.9583, 0.3686, 0.9401],
        [0.9255, 0.0381, 0.8322, 0.0164, 0.3185],
        [0.9103, 0.2022, 0.8393, 0.8391, 0.3060],
        [0.9032, 0.6207, 0.4548, 0.8162, 0.6557]])
test_randint=
tensor([[5, 2, 3, 2],
        [7, 5, 4, 8],
        [5, 6, 4, 3]])
test_randn=
tensor([[ 2.5142, -0.9164,  0.9966, -0.3689],
        [ 1.4050,  1.1789, -0.0524, -0.4698],
        [ 0.5387, -1.1596,  0.1878, -0.7700]])
test_randperm=tensor([3, 5, 1, 4, 6, 0, 2, 7])
相关推荐
通信.萌新31 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家33 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼36 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Bran_Liu37 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
伟贤AI之路39 分钟前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_3077791340 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying551 小时前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask