整理:4篇专注于多模态大语言模型(MLLM)的瘦身变体论文

近年来,随着人工智能技术飞速发展,大语言模型(LLM)和多模态大语言模型(MLLM)成为了炙手可热的明星。它们不仅能处理文字,还能看图识字,简直是"全能选手"。这种能力得益于模型中加入的"视觉编码器"和"特征投影仪",就好比给大脑装上了"眼睛"和"理解工具"。不过,模型越大,就越像个贪吃的怪兽,耗费大量资源,让使用它的人直呼"吃不消"。所以,如何让这些模型既聪明又省钱,成了大家绞尽脑汁的挑战。

根据"缩放定律",模型越大,通常表现越好,但这也意味着更高的资源投入。于是,大家开始想办法"瘦身",推出了轻量版的大语言模型和小型的多模态模型(s-MLLM),既能满足需求,又不那么"烧钱"。通过改进模型结构、用知识蒸馏和压缩技术"瘦身塑形",这些模型依然保持着不错的表现力。加上预训练和监督微调的双重"训练课程",模型在复杂的任务中也表现得游刃有余。

为了让大语言模型在自然语言处理中得到更广泛的应用,我们总结了四篇专注于多模态大语言模型(MLLM)的瘦身变体

论文1

论文2

论文3

论文4

相关推荐
吕永强1 小时前
人工智能与环境:守护地球的智能防线
人工智能·科普
音元系统1 小时前
五度标调法调域统计分析工具
语言模型·自然语言处理·语音识别·输入法·语音分类
兮℡檬,1 小时前
房价预测|Pytorch
人工智能·pytorch·python
白-胖-子6 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手7 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道8 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.08 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12019 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师9 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen9 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习