整理:4篇专注于多模态大语言模型(MLLM)的瘦身变体论文

近年来,随着人工智能技术飞速发展,大语言模型(LLM)和多模态大语言模型(MLLM)成为了炙手可热的明星。它们不仅能处理文字,还能看图识字,简直是"全能选手"。这种能力得益于模型中加入的"视觉编码器"和"特征投影仪",就好比给大脑装上了"眼睛"和"理解工具"。不过,模型越大,就越像个贪吃的怪兽,耗费大量资源,让使用它的人直呼"吃不消"。所以,如何让这些模型既聪明又省钱,成了大家绞尽脑汁的挑战。

根据"缩放定律",模型越大,通常表现越好,但这也意味着更高的资源投入。于是,大家开始想办法"瘦身",推出了轻量版的大语言模型和小型的多模态模型(s-MLLM),既能满足需求,又不那么"烧钱"。通过改进模型结构、用知识蒸馏和压缩技术"瘦身塑形",这些模型依然保持着不错的表现力。加上预训练和监督微调的双重"训练课程",模型在复杂的任务中也表现得游刃有余。

为了让大语言模型在自然语言处理中得到更广泛的应用,我们总结了四篇专注于多模态大语言模型(MLLM)的瘦身变体

论文1

论文2

论文3

论文4

相关推荐
双向332 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户5191495848454 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具5 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484516 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
星期天要睡觉20 分钟前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs23 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
什么都想学的阿超31 分钟前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理
大千AI助手2 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光3 小时前
17.迁移学习
人工智能·机器学习·迁移学习