机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
deephub15 分钟前
使用 tsfresh 和 AutoML 进行时间序列特征工程
人工智能·python·机器学习·特征工程·时间序列
静听松涛13315 分钟前
从模式识别到逻辑推理的认知跨越
人工智能·机器学习
宵时待雨21 分钟前
STM32笔记归纳2:GPIO
笔记·stm32·嵌入式硬件
啊阿狸不会拉杆24 分钟前
《机器学习》第四章-无监督学习
人工智能·学习·算法·机器学习·计算机视觉
明月醉窗台29 分钟前
Ryzen AI --- AMD XDNA架构的部署框架
人工智能·opencv·目标检测·机器学习·计算机视觉·架构
啊阿狸不会拉杆29 分钟前
《机器学习》第三章 - 监督学习
人工智能·深度学习·学习·机器学习·计算机视觉
Java程序员威哥31 分钟前
用Java玩转机器学习:协同过滤算法实战(比Python快3倍的工程实现)
java·开发语言·后端·python·算法·spring·机器学习
Lips61133 分钟前
第六章 支持向量机
算法·机器学习·支持向量机
陈天伟教授1 小时前
人工智能应用-机器视觉:绘画大师 05.还原毕加索的隐藏画
人工智能·神经网络·数码相机·生成对抗网络·dnn
sunfove1 小时前
从数据到智能:机器学习核心方法的数学原理与全景解构
人工智能·机器学习