机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
极客BIM工作室1 小时前
理清 BERT 中 [CLS] 向量的核心逻辑:训练双向更新与推理作用不矛盾
人工智能·机器学习·bert
北顾南栀倾寒1 小时前
[杂学笔记]C++编译过程、静态链接库与动态链接库的区别、动态多态的实现机制、虚拟地址空间分布与C++内存分布、volatile的作用以及使用场景
笔记
IT·小灰灰1 小时前
基于Python的机器学习/数据分析环境搭建完全指南
开发语言·人工智能·python·算法·机器学习·数据分析
星轨初途3 小时前
数据结构二叉树之链式结构(3)(下)
c语言·网络·数据结构·经验分享·笔记·后端
walnut_oyb4 小时前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理
智者知已应修善业4 小时前
【51单片机LED贪吃蛇】2023-3-27
c语言·c++·经验分享·笔记·嵌入式硬件·51单片机
zhanglei5000384 小时前
一、机器学习概述
机器学习
Caven774 小时前
【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide
人工智能·机器学习
Q26433650234 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
charlie1145141917 小时前
从 0 开始:在 WSL + VSCode 上利用 Maven 构建 Java Spring Boot 工程
java·笔记·vscode·后端·学习·maven·springboot