机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
Das12 小时前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
星轨初途2 小时前
郑州轻工业大学2025天梯赛解题
c++·经验分享·笔记·算法·链表·剪枝
阿波罗8号3 小时前
《一本书读懂支付》
笔记
囊中之锥.3 小时前
《机器学习SVM从零到精通:图解最优超平面与软间隔实战》
算法·机器学习·支持向量机
光羽隹衡3 小时前
集成学习之随机森林
随机森林·机器学习·集成学习
顽强卖力4 小时前
第二章:什么是数据分析师?
笔记·python·职场和发展·学习方法
啊巴矲4 小时前
小白从零开始勇闯人工智能:机器学习初级篇(随机森林)
人工智能·机器学习
格林威4 小时前
跨设备图像拼接:统一色彩偏差的8个核心策略,附OpenCV+Halcon实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
Hello.Reader4 小时前
Flink ML KNN 入门基于 Table API 的近邻分类
机器学习·分类·flink
北岛寒沫5 小时前
北京大学国家发展研究院 经济学辅修 经济学原理课程笔记(第十五章 劳动力市场)
经验分享·笔记·学习