机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
lisw057 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
Yawesh_best9 小时前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
Ccjf酷儿12 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y12 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面13 小时前
(笔记)自定义 systemd 服务
笔记
双翌视觉13 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中13 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
DKPT14 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
我不是QI15 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
QT 小鲜肉15 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法