机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
chushiyunen几秒前
快慢双指针算法笔记
数据结构·笔记·算法
重生之我要成为代码大佬4 分钟前
深度学习1-安装pytorch(无独立显卡版本)
人工智能·pytorch·深度学习·机器学习
临风小红楼6 分钟前
别了2025,你好2026
笔记
烟锁池塘柳013 分钟前
一文总结模型压缩技术:剪枝、量化与蒸馏的原理、实践与工程思考
算法·机器学习·剪枝
laplace01232 小时前
Part 3:模型调用、记忆管理与工具调用流程(LangChain 1.0)笔记(Markdown)
开发语言·人工智能·笔记·python·langchain·prompt
鲨莎分不晴2 小时前
拯救暗淡图像:深度解析直方图均衡化(原理、公式与计算)
人工智能·算法·机器学习
武子康2 小时前
大数据-200 决策树信息增益详解:信息熵、ID3 选特征与 Python 最佳切分实现
大数据·后端·机器学习
wdfk_prog2 小时前
[Linux]学习笔记系列 -- [fs]open
linux·笔记·学习
wdfk_prog2 小时前
[Linux]学习笔记系列 -- [fs]nsfs
linux·笔记·学习
手揽回忆怎么睡2 小时前
Streamlit学习笔记2
笔记·学习