机器学习笔记 // 创建并训练DNN来拟合和预测序列数据

DNN是"Deep Neural Network"的缩写,中文译为深度神经网络。

dataset = windowed_dataset(series, window_size, batch_size, shuffle_buffer_size)

model = tf.keras.models.Sequetial([

tf.keras.layers.Dense(10, input_shape=[window_size],

activation='relu'),

tf.keras.layers.Dense(10, activation='relu'),

tf.keras.layers.Dense(1)])

这是一个非常简单的DNN模型,它包含两个密集层,第一层接收的输入形状是window_size,第二个是包含预测值的输出层。

与之前一样,这个模型在编译时使用一个损失函数和一个优化器。在这个例子中损失函数被指定为mse(均方误差)​,优化器为sgd(随机梯度下降)​。SGD接收参数作为学习率(lr)和动量,这些参数调整优化器的学习方式。每一个数据集都不一样,因此最好能控制它们。在下一节中,你会看到如何求出最优值,但现在只需要像这样设置它们:

mdel.compile(loss="mse", optimizer=tf.keras.optimizaers.SGD(lr=1e-6,momentum=0.9))

接下来调用model.fit训练,将你的数据集传给它,然后指定训练的回合数:

model.fit(dataset,epochs=100,verbose=1)

训练好以后,就可以开始使用它进行预测。

print(series[start_point:start_point+window_size])

print(series[start_point+window_size])

print(model.predict(

series[start_point:start_point+window_size][np.newaxis]))

相关推荐
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫1 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
DKPT4 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
生态遥感监测笔记8 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
刘海东刘海东9 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
路溪非溪10 小时前
机器学习之线性回归
人工智能·机器学习·线性回归