大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结

文章目录

  • [1. 介绍](#1. 介绍)
  • [2. LoRA的优势](#2. LoRA的优势)
  • [3. LoRA训练步骤:](#3. LoRA训练步骤:)
  • 4.总结

1. 介绍

LoRA(Low-Rank Adaptation)是一种用于高效微调大模型的技术,它通过在已有模型的基础上引入低秩矩阵来减少训练模型时所需的参数量和计算量。具体来说,LoRA在训练模型时将模型中的某些权重矩阵分解为两个低秩矩阵A和B,并对这些矩阵进行微调(finetune),而模型的其他部分保持冻结不变。

2. LoRA的优势

  1. 它冻结了预训练的模型权重,并将可训练的秩分解矩阵注入到 Transformer 架构的每一层中,大大减少了下游任务的可训练参数的数量。
  2. 与使用 Adam 微调的 GPT3-175B 相比,LoRA 可以将可训练参数数量减少10,000,GPU内存需求减少3倍。

3. LoRA训练步骤:

  1. 选择目标层:首先,在预训练神经网络模型中选择要应用LoRA的目标层。这些层通常是与特定任务相关的,如自注意力机制中的查询Q和键K矩阵。

  2. 初始化映射矩阵A和逆映射矩阵B:映射矩阵A一般用随机高斯分布初始化,当然实际代码实现时,比如微软的deepspeedchat在用到LoRA时,一开始通过0矩阵占位,然后调用搭配ReLU激活函数的kaiming均匀分布初始化;逆映射矩阵B用0矩阵初始化。

  3. 微调模型:用新的参数矩阵替换目标层的原始参数矩阵,然后在特定任务的训练数据上对模型进行微调。

  4. 参数更新:在微调过程中,计算损失函数关于映射矩阵A和逆映射矩阵B的梯度,并使用优化算法(如Adam、SGD等)对矩阵A和B进行更新。(注意,在更新过程中,原始参数矩阵W保持不变,只训练降维矩阵A与升维矩阵B)

  5. 重复更新:在训练的每个批次中,重复步骤3-5,直到达到预定的训练轮次(epoch)或满足收敛条件 。

  6. 合并权重参数 :将训练好的映射矩阵A和逆映射矩阵B,跟模型预先训练的权重矩阵进行合并。

4.总结

相关推荐
7澄1几秒前
深入解析 LeetCode 1572:矩阵对角线元素的和 —— 从问题本质到高效实现
java·算法·leetcode·矩阵·intellij-idea
Mintopia几秒前
🧭 传统 Web 开发最好的 AI 助手框架排行榜(2025版)
前端·人工智能·aigc
Juchecar4 分钟前
“提升效率”论正确吗?上限及上限之后
人工智能
卡提西亚8 分钟前
一本通网站1125题:矩阵乘法
c++·算法·矩阵·编程题·一本通
前端双越老师24 分钟前
等 AI 编程普及后,我该何去何从?
人工智能·ai编程
syker31 分钟前
NEWBASIC 2.06.7 API 帮助与用户使用手册
开发语言·人工智能·机器学习·自动化
说私域33 分钟前
社群经济下开源链动2+1模式AI智能名片S2B2C商城小程序的信任重构机制研究
人工智能·小程序·重构
PPT百科1 小时前
PPT导出为图片的格式选择:JPG与PNG的区别
人工智能·经验分享·职场和发展·powerpoint·职场·效率工具
aneasystone本尊1 小时前
重温 Java 21 之作用域值
人工智能