医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22

小罗碎碎念

今天给大家推荐一本入门书籍。

这本书由Uday Kamath、Kenneth L. Graham和Wael Emara撰写,深入探讨了Transformer模型在机器学习领域的应用,特别是自然语言处理(NLP)。

原文pdf已经上传至知识星球的【入门书籍】专栏,感兴趣的老师/同学可以前去获取。


内容概述

  1. Transformer模型的介绍:书中首先介绍了Transformer模型的历史背景、架构和分类,以及预训练方法和应用。

  2. 基础和入门:详细讲解了编码器-解码器架构、序列到序列模型、注意力机制和Transformer模型的工作原理。

  3. BERT模型:讨论了BERT(Bidirectional Encoder Representations from Transformers)的架构、预训练、微调和变体,以及BERT在句子表示和主题建模中的应用。

  4. 多语言Transformer架构:探讨了多语言Transformer模型,包括基本的多语言Transformer、单编码器和双编码器多语言NLU模型,以及多语言数据和基准测试。

  5. Transformer模型的修改:分析了对标准Transformer架构进行的修改,包括轻量级Transformer、多头自注意力的修改、训练任务效率的改进等。

  6. 预训练和特定应用的Transformer:讨论了预训练模型在文本处理、计算机视觉、自动语音识别和多模态任务中的应用。

  7. 可解释性和解释性技术:探讨了Transformer模型的可解释性,包括模型特质、影响可解释性的相关领域、解释方法的分类,以及在电子健康记录系统中使用Transformer的案例研究。

书中还包括了多个案例研究,展示了Transformer模型在机器翻译、主题建模、情感分析和自动语音识别等任务中的应用

此外,书中还讨论了Transformer模型的可解释性,包括如何通过可视化和分析技术来解释模型的决策过程。


相关推荐
StarPrayers.3 小时前
K-means 聚类
机器学习·kmeans·聚类
极客学术工坊8 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
庄周迷蝴蝶8 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran8 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
哥布林学者10 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(一)超参数调整
深度学习·ai
qy-ll10 小时前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
G311354227310 小时前
深度学习中适合长期租用的高性价比便宜的GPU云服务器有哪些?
服务器·人工智能·深度学习
徐行tag11 小时前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习
8Qi812 小时前
Stable Diffusion详解
人工智能·深度学习·stable diffusion·图像生成
ChoSeitaku12 小时前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵