医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22

小罗碎碎念

今天给大家推荐一本入门书籍。

这本书由Uday Kamath、Kenneth L. Graham和Wael Emara撰写,深入探讨了Transformer模型在机器学习领域的应用,特别是自然语言处理(NLP)。

原文pdf已经上传至知识星球的【入门书籍】专栏,感兴趣的老师/同学可以前去获取。


内容概述

  1. Transformer模型的介绍:书中首先介绍了Transformer模型的历史背景、架构和分类,以及预训练方法和应用。

  2. 基础和入门:详细讲解了编码器-解码器架构、序列到序列模型、注意力机制和Transformer模型的工作原理。

  3. BERT模型:讨论了BERT(Bidirectional Encoder Representations from Transformers)的架构、预训练、微调和变体,以及BERT在句子表示和主题建模中的应用。

  4. 多语言Transformer架构:探讨了多语言Transformer模型,包括基本的多语言Transformer、单编码器和双编码器多语言NLU模型,以及多语言数据和基准测试。

  5. Transformer模型的修改:分析了对标准Transformer架构进行的修改,包括轻量级Transformer、多头自注意力的修改、训练任务效率的改进等。

  6. 预训练和特定应用的Transformer:讨论了预训练模型在文本处理、计算机视觉、自动语音识别和多模态任务中的应用。

  7. 可解释性和解释性技术:探讨了Transformer模型的可解释性,包括模型特质、影响可解释性的相关领域、解释方法的分类,以及在电子健康记录系统中使用Transformer的案例研究。

书中还包括了多个案例研究,展示了Transformer模型在机器翻译、主题建模、情感分析和自动语音识别等任务中的应用

此外,书中还讨论了Transformer模型的可解释性,包括如何通过可视化和分析技术来解释模型的决策过程。


相关推荐
千宇宙航35 分钟前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董38 分钟前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco1 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟2 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟4 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手5 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界6 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield6 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
强哥之神7 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算