【大数据学习 | Spark-Core】Spark提交及运行流程

spark的集群运行结构

我们要选择第一种使用方式

命令组成结构 spark-submit [选项] jar包 参数

standalone集群能够使用的选项。

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

用spark-submit提交spark应用程序。

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://nn1.hadoop:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
100

参考:

集群参数配置

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

spark webUI

Driver: 运行 Application 的 main() 函数的节点,提交任务,并下发计算任务;

**Cluster Manager:**在standalone模式中即为Master主节点,负责整个集群节点管理以及资源调度;在YARN模式中为资源管理器;

**Worker节点:**上报自己节点的资源情况,启动 和 管理 Executor;

**Executor:**执行器,是为某个Application运行在worker节点上的一个进程;负责执行task任务(线程);

**Task:**被送到某个Executor上的工作单元,跟MR中的MapTask和ReduceTask概念一样,是运行Application的基本单位。

运行大概流程:

1)driver 端提交应用,并向master申请资源;

2)Master节点通过RPC和Worker节点通信,根据资源情况在相应的worker节点启动Executor 进程;并将资源参数和Driver端的位置传递过来;

3)启动的Executor 进程 会主动与 Driver端通信,Driver 端根据代码的执行情况,产生多个task,发送给Executor;

4)Executor 启动 task 做真正的计算,每个Task 得到资源参数后,对相应的输入分片数据执行计算逻辑;

相关推荐
brave and determined10 分钟前
接口通讯学习(day05):智能手机的内部高速公路:揭秘MIPI CSI与DSI技术
学习·智能手机·软件工程·制造·csi·mipi·dsi
dalalajjl20 分钟前
每个Python开发者都应该试试知道创宇AiPy!工作效率提升500%的秘密武器
大数据·人工智能
Tonya434 小时前
测开学习DAY37
学习
2501_941623329 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
YangYang9YangYan10 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
roman_日积跬步-终至千里10 小时前
【强化学习基础(2)】被动强化学习:学习价值函数
学习
逢考必过@k10 小时前
6级550学习ing
学习
小五传输11 小时前
常用的文件摆渡系统:让数据安全高效跨越网络界限
大数据·运维·安全
陈天伟教授12 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习