【大数据学习 | Spark-Core】Spark提交及运行流程

spark的集群运行结构

我们要选择第一种使用方式

命令组成结构 spark-submit [选项] jar包 参数

standalone集群能够使用的选项。

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

用spark-submit提交spark应用程序。

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://nn1.hadoop:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
100

参考:

集群参数配置

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

spark webUI

Driver: 运行 Application 的 main() 函数的节点,提交任务,并下发计算任务;

**Cluster Manager:**在standalone模式中即为Master主节点,负责整个集群节点管理以及资源调度;在YARN模式中为资源管理器;

**Worker节点:**上报自己节点的资源情况,启动 和 管理 Executor;

**Executor:**执行器,是为某个Application运行在worker节点上的一个进程;负责执行task任务(线程);

**Task:**被送到某个Executor上的工作单元,跟MR中的MapTask和ReduceTask概念一样,是运行Application的基本单位。

运行大概流程:

1)driver 端提交应用,并向master申请资源;

2)Master节点通过RPC和Worker节点通信,根据资源情况在相应的worker节点启动Executor 进程;并将资源参数和Driver端的位置传递过来;

3)启动的Executor 进程 会主动与 Driver端通信,Driver 端根据代码的执行情况,产生多个task,发送给Executor;

4)Executor 启动 task 做真正的计算,每个Task 得到资源参数后,对相应的输入分片数据执行计算逻辑;

相关推荐
PP东5 分钟前
Flowable学习(二)——Flowable概念学习
java·后端·学习·flowable
学电子她就能回来吗7 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
人道领域15 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_124987075337 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader42 分钟前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
零售ERP菜鸟1 小时前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
Hello.Reader2 小时前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
AI视觉网奇2 小时前
ue 角色驱动衣服 绑定衣服
笔记·学习·ue5
浪子小院3 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
wdfk_prog3 小时前
[Linux]学习笔记系列 -- [drivers][input]serio
linux·笔记·学习