【大数据学习 | Spark-Core】Spark提交及运行流程

spark的集群运行结构

我们要选择第一种使用方式

命令组成结构 spark-submit [选项] jar包 参数

standalone集群能够使用的选项。

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

用spark-submit提交spark应用程序。

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://nn1.hadoop:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
100

参考:

集群参数配置

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

spark webUI

Driver: 运行 Application 的 main() 函数的节点,提交任务,并下发计算任务;

**Cluster Manager:**在standalone模式中即为Master主节点,负责整个集群节点管理以及资源调度;在YARN模式中为资源管理器;

**Worker节点:**上报自己节点的资源情况,启动 和 管理 Executor;

**Executor:**执行器,是为某个Application运行在worker节点上的一个进程;负责执行task任务(线程);

**Task:**被送到某个Executor上的工作单元,跟MR中的MapTask和ReduceTask概念一样,是运行Application的基本单位。

运行大概流程:

1)driver 端提交应用,并向master申请资源;

2)Master节点通过RPC和Worker节点通信,根据资源情况在相应的worker节点启动Executor 进程;并将资源参数和Driver端的位置传递过来;

3)启动的Executor 进程 会主动与 Driver端通信,Driver 端根据代码的执行情况,产生多个task,发送给Executor;

4)Executor 启动 task 做真正的计算,每个Task 得到资源参数后,对相应的输入分片数据执行计算逻辑;

相关推荐
am心1 分钟前
学习笔记-用户下单
笔记·学习
微露清风11 分钟前
系统性学习C++-第二十二讲-C++11
java·c++·学习
Zoey的笔记本44 分钟前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
进阶小白猿1 小时前
Java技术八股学习Day20
java·开发语言·学习
lingling0091 小时前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏1 小时前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
Acrel187021067061 小时前
浅谈电气防火限流保护器设计在消防安全中的应用价值
大数据·网络
renhongxia11 小时前
学习基于数字孪生的工艺参数优化
学习
gjf05_052 小时前
人该怎样活着呢?版本68.6
学习
赵谨言2 小时前
Python串口的三相交流电机控制系统研究
大数据·开发语言·经验分享·python