【大数据学习 | Spark-Core】Spark提交及运行流程

spark的集群运行结构

我们要选择第一种使用方式

命令组成结构 spark-submit [选项] jar包 参数

standalone集群能够使用的选项。

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

用spark-submit提交spark应用程序。

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://nn1.hadoop:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
100

参考:

集群参数配置

bash 复制代码
--master MASTER_URL #集群地址
--class class_name #jar包中的类
--executor-memory MEM #executor的内存
--executor-cores NUM # executor的核数
--total-executor-cores NUM # 总核数

spark webUI

Driver: 运行 Application 的 main() 函数的节点,提交任务,并下发计算任务;

**Cluster Manager:**在standalone模式中即为Master主节点,负责整个集群节点管理以及资源调度;在YARN模式中为资源管理器;

**Worker节点:**上报自己节点的资源情况,启动 和 管理 Executor;

**Executor:**执行器,是为某个Application运行在worker节点上的一个进程;负责执行task任务(线程);

**Task:**被送到某个Executor上的工作单元,跟MR中的MapTask和ReduceTask概念一样,是运行Application的基本单位。

运行大概流程:

1)driver 端提交应用,并向master申请资源;

2)Master节点通过RPC和Worker节点通信,根据资源情况在相应的worker节点启动Executor 进程;并将资源参数和Driver端的位置传递过来;

3)启动的Executor 进程 会主动与 Driver端通信,Driver 端根据代码的执行情况,产生多个task,发送给Executor;

4)Executor 启动 task 做真正的计算,每个Task 得到资源参数后,对相应的输入分片数据执行计算逻辑;

相关推荐
云上艺旅15 小时前
K8S学习之基础七十四:部署在线书店bookinfo
学习·云原生·容器·kubernetes
你觉得20516 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙16 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
别惊鹊16 小时前
MapReduce工作原理
大数据·mapreduce
8K超高清16 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
A旧城以西17 小时前
数据结构(JAVA)单向,双向链表
java·开发语言·数据结构·学习·链表·intellij-idea·idea
无所谓จุ๊บ17 小时前
VTK知识学习(50)- 交互与Widget(一)
学习·vtk
FAREWELL0007517 小时前
C#核心学习(七)面向对象--封装(6)C#中的拓展方法与运算符重载: 让代码更“聪明”的魔法
学习·c#·面向对象·运算符重载·oop·拓展方法
吴梓穆17 小时前
UE5学习笔记 FPS游戏制作38 继承标准UI
笔记·学习·ue5
2401_8712905818 小时前
MapReduce 的工作原理
大数据·mapreduce