【C++融会贯通】哈希表的使用

目录

一、unordered系列关联式容器

[1.1 unordered_map](#1.1 unordered_map)

[1.1.1 unordered_map的文档介绍](#1.1.1 unordered_map的文档介绍)

[1.1.2 unordered_map的接口说明](#1.1.2 unordered_map的接口说明)

[1.2 标准库中的unordered_map](#1.2 标准库中的unordered_map)

[1.2.1 unordered_map的介绍](#1.2.1 unordered_map的介绍)

[二、 底层结构](#二、 底层结构)

[2.1 哈希概念](#2.1 哈希概念)

[2.2 哈希冲突](#2.2 哈希冲突)

[2.3 哈希函数](#2.3 哈希函数)

[2.4 哈希冲突解决](#2.4 哈希冲突解决)

[2.4.1 闭散列](#2.4.1 闭散列)

线性探测的实现

[2.4.2 开散列](#2.4.2 开散列)

开散列实现

[2.5 开散列与闭散列比较](#2.5 开散列与闭散列比较)

[三、 模拟实现](#三、 模拟实现)

[3.1 哈希表的改造](#3.1 哈希表的改造)

[3.1. 模板参数列表的改造](#3.1. 模板参数列表的改造)

[3.2. 增加迭代器操作](#3.2. 增加迭代器操作)

[3.3 增加通过key获取value操作](#3.3 增加通过key获取value操作)

[3.2 unordered_map](#3.2 unordered_map)

[3.3 unordered_set](#3.3 unordered_set)

四、哈希的应用

[4.1 位图](#4.1 位图)

[4.1.1 位图概念](#4.1.1 位图概念)

[4.1.2 位图的实现](#4.1.2 位图的实现)

[4.1.3 位图的应用](#4.1.3 位图的应用)

[4.2 布隆过滤器](#4.2 布隆过滤器)

[4.2.1 布隆过滤器提出](#4.2.1 布隆过滤器提出)

4.2.2布隆过滤器概念

[4.2.3 布隆过滤器的插入](#4.2.3 布隆过滤器的插入)

[4.2.4 布隆过滤器的查找](#4.2.4 布隆过滤器的查找)

[4.2.5 布隆过滤器删除](#4.2.5 布隆过滤器删除)

[4.2.6 布隆过滤器优点](#4.2.6 布隆过滤器优点)

[4.2.7 布隆过滤器缺陷](#4.2.7 布隆过滤器缺陷)

结尾:


一、unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个 unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍。


1.1 unordered_map

1.1.1 unordered_map的文档介绍

unordered_set的文档介绍

  1. unordered_map是存储键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。

1.1.2 unordered_map的接口说明

  1. unordered_map的构造
  1. unordered_map的容量
  1. unordered_map的迭代器
  1. unordered_map的元素访问

注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶 中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中, 将key对应的value返回。

  1. unordered_map的查询

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

  1. unordered_map的修改操作
  1. unordered_map的桶操作

1.2 标准库中的unordered_map

1.2.1 unordered_map的介绍

unordered_map的介绍

  1. 无序性:unordered_map 中的元素没有特定的顺序,元素的排列由哈希函数决定。
  2. 快速访问:由于使用了哈希表,unordered_map 提供了非常快速的查找、插入和删除操作。
  3. 唯一性:unordered_map 中的键是唯一的,不能有两个键相同的元素。如果尝试插入一个已经存在的键,新值会覆盖旧值。
    哈希函数:unordered_map 使用一个哈希函数来将键映射到哈希表中的位置。默认情况下,
  4. C++ 标准库提供了一个哈希函数,但你也可以自定义哈希函数来满足特定需求。
  5. 迭代器:unordered_map 提供了迭代器来遍历容器中的元素。但是,由于它是无序的,所以遍历的顺序与元素插入的顺序无关。

unordered_map和unordered_set的接口说明差不多,在此就不做过多的介绍了


二、 底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

2.1 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素 时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N)平衡树中为树的高度,即 O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立 一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素 对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置 取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称 为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。

2.2 哈希冲突

对于两个数据元素的关键字k_ik_j(i != j),有k_i != k_j,但有:Hash(k_i) == Hash(k_j),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突 或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为"同义词"

2.3 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值 域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

1.常见哈希函数

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B优点:简单、均匀

缺点:需要事先知道关键字的分布情况

使用场景:适合查找比较小且连续的情况

  1. 除留余数法--(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p将关键码转换成哈希地址

  1. 平方取中法--(了解)

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;

再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  1. 折叠法--(了解)

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。

折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  1. 随机数法--(了解)

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。

通常应用于关键字长度不等时采用此法

  1. 数学分析法--(了解)

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同 的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还 可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移 位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的 若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

2.4 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

2.4.1 闭散列

**闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以把key存放到冲突位置中的"下一个" 空位置中去。**那如何寻找下一个空位置 呢?

  1. 线性探测

比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4, 因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置
  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素

删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素 会影响其他元素的搜索。 比如删除元素4,如果直接删除掉,44查找起来可能会受影 响。因此线性探测采用标记的伪删除法来删除一个元素。

线性探测的实现

cpp 复制代码
template<class K>
struct DefaultHashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

// 12:00
template<>
struct DefaultHashFunc<string>
{
	size_t operator()(const string& str)
	{
		// BKDR
		size_t hash = 0;
		for (auto ch : str)
		{
			hash *= 131;
			hash += ch;
		}

		return hash;
	}
};

namespace open_address
{
	enum STATE
	{
		EXIST,
		EMPTY,
		DELETE
	};

	template<class K, class V>
	struct HashData
	{
		pair<K, V> _kv;
		STATE _state = EMPTY;
	};

	template<class K, class V, class HashFunc = DefaultHashFunc<K>>
	class HashTable
	{
	public:
		HashTable()
		{
			_table.resize(10);
		}

		bool Insert(const pair<K, V>& kv)
		{
			if (Find(kv.first))
			{
				return false;
			}

			// 扩容
			//if ((double)_n / (double)_table.size() >= 0.7)
			if (_n * 10 / _table.size() >= 7)
			{
				size_t newSize = _table.size() * 2;
				// 遍历旧表,重新映射到新表
				HashTable<K, V, HashFunc> newHT;
				newHT._table.resize(newSize);

				// 遍历旧表的数据插入到新表即可
				for (size_t i = 0; i < _table.size(); i++)
				{
					if (_table[i]._state == EXIST)
					{
						newHT.Insert(_table[i]._kv);
					}
				}

				_table.swap(newHT._table);
			}

			// 线性探测
			HashFunc hf;
			size_t hashi = hf(kv.first) % _table.size();
			while (_table[hashi]._state == EXIST)
			{
				++hashi;
				hashi %= _table.size();
			}

			_table[hashi]._kv = kv;
			_table[hashi]._state = EXIST;
			++_n;

			return true;
		}

		HashData<const K, V>* Find(const K& key)
		{
			// 线性探测
			HashFunc hf;
			size_t hashi = hf(key) % _table.size();
			while (_table[hashi]._state != EMPTY)
			{
				if (_table[hashi]._state == EXIST
					&& _table[hashi]._kv.first == key)
				{
					return (HashData<const K, V>*) & _table[hashi];
				}

				++hashi;
				hashi %= _table.size();
			}

			return nullptr;
		}

		// 按需编译
		bool Erase(const K& key)
		{
			HashData<const K, V>* ret = Find(key);
			if (ret)
			{
				ret->_state = DELETE;
				--_n;

				return true;
			}

			return false;
		}

	private:
		vector<HashData<K, V>> _table;
		size_t _n = 0; // 存储有效数据的个数
	};
}

线性探测优点:实现非常简单,

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据"堆积",即:不同 关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降 低。

  1. 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位 置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法 为:H_i = (H_0 + i\^2 )% m, 或者:H_i = (H_0 - i\^2 )% m。其中:i = 1,2,3..., H_0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表 的大小。

对于2.1中如果要插入44,产生冲突,使用解决后的情况为:

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任 何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在 搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出 必须考虑增容。

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

2.4.2 开散列

  1. 开散列概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地 址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链 接起来,各链表的头结点存储在哈希表中。

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

开散列实现

cpp 复制代码
namespace hash_bucket
{
	template<class T>
	struct HashNode
	{
		T _data;
		HashNode<T>* _next;

		HashNode(const T& data)
			:_data(data)
			, _next(nullptr)
		{}
	};

	// 前置声明
	template<class K, class T, class KeyOfT, class HashFunc>
	class HashTable;

	template<class K, class T, class Ptr, class Ref, class KeyOfT, class HashFunc>
	struct HTIterator
	{
		typedef HashNode<T> Node;
		typedef HTIterator<K, T, Ptr, Ref, KeyOfT, HashFunc> Self;
		typedef HTIterator<K, T, T*, T&, KeyOfT, HashFunc> Iterator;

		Node* _node;
		const HashTable<K, T, KeyOfT, HashFunc>* _pht;

		/*HTIterator(Node* node, HashTable<K, T, KeyOfT, HashFunc>* pht)
			:_node(node)
			,_pht(pht)
		{}*/

		HTIterator(Node* node, const HashTable<K, T, KeyOfT, HashFunc>* pht)
			:_node(node)
			, _pht(pht)
		{}

		// 普通迭代器时,他是拷贝构造
		// const迭代器时,他是构造
		HTIterator(const Iterator& it)
			:_node(it._node)
			, _pht(it._pht)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		Self& operator++()
		{
			if (_node->_next)
			{
				// 当前桶还没完
				_node = _node->_next;
			}
			else
			{
				KeyOfT kot;
				HashFunc hf;
				size_t hashi = hf(kot(_node->_data)) % _pht->_table.size();
				// 从下一个位置查找查找下一个不为空的桶
				++hashi;
				while (hashi < _pht->_table.size())
				{
					if (_pht->_table[hashi])
					{
						_node = _pht->_table[hashi];
						return *this;
					}
					else
					{
						++hashi;
					}
				}

				_node = nullptr;
			}

			return *this;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		bool operator==(const Self& s)
		{
			return _node == s._node;
		}
	};

开散列的思考

  1. 只能存储key为整形的元素,其他类型怎么解决?
cpp 复制代码
// 哈希函数采用处理余数法,被模的key必须要为整形才可以处理,此处提供将key转化为
整形的方法
// 整形数据不需要转化
template<class T>
class DefHashF
{
public:
	size_t operator()(const T& val)
	{
		return val;
	}
};
// key为字符串类型,需要将其转化为整形
class Str2Int
{
public:
	size_t operator()(const string& s)
	{
		const char* str = s.c_str();
		unsigned int seed = 131; // 31 131 1313 13131 131313
		unsigned int hash = 0;
		while (*str)
		{
			hash = hash * seed + (*str++);
		}

		return (hash & 0x7FFFFFFF);
	}
};
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class V, class HF>
class HashBucket
{
	// ......
private:
	size_t HashFunc(const V& data)
	{
		return HF()(data.first) % _ht.capacity();
	}
};
  1. 除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?
cpp 复制代码
size_t GetNextPrime(size_t prime)
		{
			static const int __stl_num_primes = 28;
			static const unsigned long __stl_prime_list[__stl_num_primes] =
			{
			  53,         97,         193,       389,       769,
			  1543,       3079,       6151,      12289,     24593,
			  49157,      98317,      196613,    393241,    786433,
			  1572869,    3145739,    6291469,   12582917,  25165843,
			  50331653,   100663319,  201326611, 402653189, 805306457,
			  1610612741, 3221225473, 4294967291
			};

			size_t i = 0;
			for (; i < PRIMECOUNT; ++i)
			{
				if (primeList[i] > prime)
					return primeList[i];
			}

			return primeList[i];
		}

2.5 开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a ,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。


三、 模拟实现

3.1 哈希表的改造

3.1. 模板参数列表的改造

cpp 复制代码
template<class K, class T, class KeyOfT, class HashFunc = DefaultHashFunc<K>>
	class HashTable
	{
		typedef HashNode<T> Node;

		// 友元声明
		template<class K, class T, class Ptr, class Ref, class KeyOfT, class HashFunc>
		friend struct HTIterator;

3.2. 增加迭代器操作

cpp 复制代码
template<class K, class T, class KeyOfT, class HashFunc>
	class HashTable;

	template<class K, class T, class Ptr, class Ref, class KeyOfT, class HashFunc>
	struct HTIterator
	{
		typedef HashNode<T> Node;
		typedef HTIterator<K, T, Ptr, Ref, KeyOfT, HashFunc> Self;
		typedef HTIterator<K, T, T*, T&, KeyOfT, HashFunc> Iterator;

		Node* _node;
		const HashTable<K, T, KeyOfT, HashFunc>* _pht;

		/*HTIterator(Node* node, HashTable<K, T, KeyOfT, HashFunc>* pht)
			:_node(node)
			,_pht(pht)
		{}*/

		HTIterator(Node* node, const HashTable<K, T, KeyOfT, HashFunc>* pht)
			:_node(node)
			, _pht(pht)
		{}

		// 普通迭代器时,他是拷贝构造
		// const迭代器时,他是构造
		HTIterator(const Iterator& it)
			:_node(it._node)
			, _pht(it._pht)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		Self& operator++()
		{
			if (_node->_next)
			{
				// 当前桶还没完
				_node = _node->_next;
			}
			else
			{
				KeyOfT kot;
				HashFunc hf;
				size_t hashi = hf(kot(_node->_data)) % _pht->_table.size();
				// 从下一个位置查找查找下一个不为空的桶
				++hashi;
				while (hashi < _pht->_table.size())
				{
					if (_pht->_table[hashi])
					{
						_node = _pht->_table[hashi];
						return *this;
					}
					else
					{
						++hashi;
					}
				}

				_node = nullptr;
			}

			return *this;
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		bool operator==(const Self& s)
		{
			return _node == s._node;
		}
	};

3.3 增加通过key获取value操作

cpp 复制代码
template<class K, class T, class KeyOfT, class HashFunc = DefaultHashFunc<K>>
	class HashTable
	{
		typedef HashNode<T> Node;

		// 友元声明
		template<class K, class T, class Ptr, class Ref, class KeyOfT, class HashFunc>
		friend struct HTIterator;
	public:
		typedef HTIterator<K, T, T*, T&, KeyOfT, HashFunc> iterator;
		typedef HTIterator<K, T, const T*, const T&, KeyOfT, HashFunc> const_iterator;

		iterator begin()
		{
			// 找第一个桶
			for (size_t i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];
				if (cur)
				{
					return iterator(cur, this);
				}
			}

			return iterator(nullptr, this);
		}

		iterator end()
		{
			return iterator(nullptr, this);
		}

		const_iterator begin() const
		{
			// 找第一个桶
			for (size_t i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];
				if (cur)
				{
					return const_iterator(cur, this);
				}
			}

			return const_iterator(nullptr, this);
		}

		const_iterator end() const
		{
			return const_iterator(nullptr, this);
		}

		size_t GetNextPrime(size_t prime)
		{
			static const int __stl_num_primes = 28;
			static const unsigned long __stl_prime_list[__stl_num_primes] =
			{
			  53,         97,         193,       389,       769,
			  1543,       3079,       6151,      12289,     24593,
			  49157,      98317,      196613,    393241,    786433,
			  1572869,    3145739,    6291469,   12582917,  25165843,
			  50331653,   100663319,  201326611, 402653189, 805306457,
			  1610612741, 3221225473, 4294967291
			};

			size_t i = 0;
			for (; i < PRIMECOUNT; ++i)
			{
				if (primeList[i] > prime)
					return primeList[i];
			}

			return primeList[i];
		}

		HashTable()
		{
			_table.resize(GetNextPrime(1), nullptr);
		}

		~HashTable()
		{
			for (size_t i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}

				_table[i] = nullptr;
			}
		}

		pair<iterator, bool> Insert(const T& data)
		{
			KeyOfT kot;

			iterator it = Find(kot(data));
			if (it != end())
			{
				return make_pair(it, false);
			}

			HashFunc hf;

			// 负载因子到1就扩容
			if (_n == _table.size())
			{
				// 16:03继续
				//size_t newSize = _table.size() * 2;
				size_t newSize = GetNextPrime(_table.size());
				vector<Node*> newTable;
				newTable.resize(newSize, nullptr);

				// 遍历旧表,顺手牵羊,把节点牵下来挂到新表
				for (size_t i = 0; i < _table.size(); i++)
				{
					Node* cur = _table[i];
					while (cur)
					{
						Node* next = cur->_next;

						// 头插到新表
						size_t hashi = hf(kot(cur->_data)) % newSize;
						cur->_next = newTable[hashi];
						newTable[hashi] = cur;

						cur = next;
					}

					_table[i] = nullptr;
				}

				_table.swap(newTable);
			}

			size_t hashi = hf(kot(data)) % _table.size();
			// 头插
			Node* newnode = new Node(data);
			newnode->_next = _table[hashi];
			_table[hashi] = newnode;
			++_n;
			return make_pair(iterator(newnode, this), true);
		}

		iterator Find(const K& key)
		{
			HashFunc hf;
			KeyOfT kot;
			size_t hashi = hf(key) % _table.size();
			Node* cur = _table[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					return iterator(cur, this);
				}

				cur = cur->_next;
			}

			return end();
		}

		bool Erase(const K& key)
		{
			HashFunc hf;
			KeyOfT kot;
			size_t hashi = hf(key) % _table.size();
			Node* prev = nullptr;
			Node* cur = _table[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					if (prev == nullptr)
					{
						_table[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}

					--_n;
					delete cur;
					return true;
				}

				prev = cur;
				cur = cur->_next;
			}


			return false;
		}
private:
		vector<Node*> _table; // 指针数组
		size_t _n = 0; // 存储了多少个有效数据
	};

3.2 unordered_map

cpp 复制代码
#include"HashsTable.h"

namespace lxp
{
	template<class K, class V>
	class unordered_map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<const K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;

		iterator begin()
		{
			return _ht.begin();
		}

		iterator end()
		{
			return _ht.end();
		}

		const_iterator begin() const
		{
			return _ht.begin();
		}

		const_iterator end() const
		{
			return _ht.end();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _ht.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT> _ht;
	};
}

3.3 unordered_set

cpp 复制代码
#include"HashsTable.h"

namespace lxp
{
	template<class K>
	class unordered_set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename hash_bucket::HashTable<K, K, SetKeyOfT>::const_iterator iterator;
		typedef typename hash_bucket::HashTable<K, K, SetKeyOfT>::const_iterator const_iterator;


		const_iterator begin() const
		{
			return _ht.begin();
		}

		const_iterator end() const
		{
			return _ht.end();
		}

		// 20:28
		pair<const_iterator, bool> insert(const K& key)
		{
			//return _ht.Insert(key);
			pair<typename hash_bucket::HashTable<K, K, SetKeyOfT>::iterator, bool> ret = _ht.Insert(key);
			return pair<const_iterator, bool>(ret.first, ret.second);
		}
	private:
		hash_bucket::HashTable<K, K, SetKeyOfT> _ht;
	};
}

四、哈希的应用

4.1 位图

4.1.1 位图概念

  1. 面试题

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。【腾讯】

  1. 遍历,时间复杂度O(N)
  2. 排序(O(NlogN)),利用二分查找: logN
  3. 位图解决

数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:

  1. 位图概念

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用 来判断某个数据存不存在的。

4.1.2 位图的实现

cpp 复制代码
#include<vector>
#include<iostream>
using namespace std;


namespace lxp
{
	template<size_t N>
	class bitset
	{
	public:
		bitset()
		{
			_a.resize(N / 32 + 1);
		}

		// x映射的那个标记成1
		void set(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			_a[i] |= (1 << j);
		}

		// x映射的那个标记成0
		void reset(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			_a[i] &= (~(1 << j));
		}

		bool test(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			return _a[i] & (1 << j);
		}
	private:
		vector<int> _a;
	};

	template<size_t N>
	class twobitset
	{
	public:
		void set(size_t x)
		{
			// 00 -> 01
			if (!_bs1.test(x) && !_bs2.test(x))
			{
				_bs2.set(x);
			} // 01 -> 10
			else if (!_bs1.test(x) && _bs2.test(x))
			{
				_bs1.set(x);
				_bs2.reset(x);
			}
			// 本身10代表出现2次及以上,就不变了
		}

		bool is_once(size_t x)
		{
			return !_bs1.test(x) && _bs2.test(x);
		}
	private:
		bitset<N> _bs1;
		bitset<N> _bs2;
	};
}

4.1.3 位图的应用

  1. 快速查找某个数据是否在一个集合中
  2. 排序 + 去重
  3. 求两个集合的交集、并集等
  4. 操作系统中磁盘块标记

4.2 布隆过滤器

4.2.1 布隆过滤器提出

我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉 那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用 户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那 些已经存在的记录。 如何快速查找呢?

  1. 用哈希表存储用户记录,缺点:浪费空间
  2. 用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理 了。
  3. 将哈希与位图结合,即布隆过滤器

4.2.2布隆过滤器概念

布隆过滤器是由布隆 (Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概 率型数据结构,特点是高效地插入和查询可以用来告诉你 "某样东西一定不存在或者可能存 在", 它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

4.2.3 布隆过滤器的插入

向布隆过滤器中插入:"baidu"

cpp 复制代码
struct BKDRHash
{
	size_t operator()(const string& s)
	{
		// BKDR
		size_t value = 0;
		for (auto ch : s)
		{
			value *= 31;
			value += ch;
		}
		return value;
	}
};
struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
			}
		}
		return hash;
	}
};
struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};
template<size_t N,
	size_t X = 5,
	class K = string,
	class HashFunc1 = BKDRHash,
	class HashFunc2 = APHash,
	class HashFunc3 = DJBHash>
class BloomFilter
{
public:
	void Set(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		size_t index2 = HashFunc2()(key) % len;
		size_t index3 = HashFunc3()(key) % len;
		/* cout << index1 << endl;
		cout << index2 << endl;
		cout << index3 << endl<<endl;*/
		_bs.set(index1);
		_bs.set(index2);
		_bs.set(index3);
	}
	bool Test(const K& key)
	{
		size_t len = X * N;
		size_t index1 = HashFunc1()(key) % len;
		if (_bs.test(index1) == false)
			return false;
		size_t index2 = HashFunc2()(key) % len;
		if (_bs.test(index2) == false)
			return false;
		size_t index3 = HashFunc3()(key) % len;
		if (_bs.test(index3) == false)
			return false;
		return true;  // 存在误判的
	}
	// 不支持删除,删除可能会影响其他值。
	void Reset(const K& key);
private:
	bitset<X* N> _bs;
};

4.2.4 布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特 位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为 零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。

注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可 能存在,因为有些哈希函数存在一定的误判。

比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其 他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。

4.2.5 布隆过滤器删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,"baidu"元素也 被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计 数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储 空间的代价来增加删除操作。

缺陷:

  1. 无法确认元素是否真正在布隆过滤器中
  2. 存在计数回绕

4.2.6 布隆过滤器优点

  1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无 关
  2. 哈希函数相互之间没有关系,方便硬件并行运算
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

4.2.7 布隆过滤器缺陷

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再 建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在计数回绕问题

结尾:

如果有什么建议和疑问,或是有什么错误,希望大家可以在评论区提一下。
希望大家以后也能和我一起进步!!
如果这篇文章对你有用的话,请大家给一个三连支持一下!!

谢谢大家收看🌹🌹

相关推荐
Legendary_0082 分钟前
LDR6020驱动的Type-C接口显示器解决方案
c语言·开发语言·计算机外设
techdashen6 分钟前
Go context.Context
开发语言·后端·golang
凡人的AI工具箱8 分钟前
40分钟学 Go 语言高并发:Select多路复用
开发语言·后端·架构·golang
苏言の狗10 分钟前
CCF认证202406-01 | 矩阵重塑(其一)
c语言·数据结构·c++·算法·矩阵
ModelBulider14 分钟前
SpringMVC应用专栏介绍
java·开发语言·后端·spring·springmvc
恬淡虚无真气从之16 分钟前
go 结构体方法
开发语言·后端·golang
java 乐山17 分钟前
ThinkPad t61p 作SMB服务器,打印服务器,pc ,android ,ipad利用此服务器互传文件
c语言
licy__17 分钟前
Python BeautifulSoup 常用语句详解
开发语言·python·beautifulsoup
努力的Java程序员17 分钟前
后端接受大写参数(亲测能用)
java·开发语言
一雨方知深秋22 分钟前
WEB APIS(DOM对象,操作元素内容,属性,表单属性,自定义属性,定时器)
开发语言·前端·javascript