【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
李永奉1 小时前
杰理芯片SDK开发-ENC双麦降噪配置/调试教程
人工智能·单片机·嵌入式硬件·物联网·语音识别
weixin_452159551 小时前
如何从Python初学者进阶为专家?
jvm·数据库·python
Hello.Reader1 小时前
面向 403 与域名频繁变更的合规爬虫工程实践以 Libvio 系站点为例
爬虫·python·网络爬虫
独自破碎E1 小时前
【总和拆分 + 双变量遍历】LCR_012_寻找数组的中心下标
数据结构·算法
WBluuue1 小时前
Codeforces 1076 Div3(ABCDEFG)
c++·算法
Dfreedom.1 小时前
图像滤波:非线性滤波与边缘保留技术
图像处理·人工智能·opencv·计算机视觉·非线性滤波·图像滤波
深蓝海拓2 小时前
PySide6从0开始学习的笔记(二十五) Qt窗口对象的生命周期和及时销毁
笔记·python·qt·学习·pyqt
u0109272712 小时前
模板编译期排序算法
开发语言·c++·算法
小白跃升坊2 小时前
基于1Panel的AI运维
linux·运维·人工智能·ai大模型·教学·ai agent
kicikng2 小时前
走在智能体前沿:智能体来了(西南总部)的AI Agent指挥官与AI调度官实践
人工智能·系统架构·智能体协作·ai agent指挥官·ai调度官·应用层ai