【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
zhanglu51161 分钟前
Java Lambda 表达式使用深度解析
开发语言·前端·python
Coding茶水间2 分钟前
基于深度学习的车牌识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·机器学习
回敲代码的猴子2 分钟前
2月13日打卡
算法
冰西瓜6002 分钟前
深度学习的数学原理(三)—— 反向传播
人工智能·深度学习
Hello.Reader3 分钟前
Flink Python REPL(pyflink-shell)实战:本地/远程/YARN 三种启动方式 + Table API 交互开发流程
python·flink·交互
henry1010104 分钟前
利用Python一键创建AWS EC2实例
linux·python·云计算·aws·ec2
EveryPossible5 分钟前
工作流练习
服务器·python·缓存
kalvin_y_liu5 分钟前
RAG 应用的经典架构与流程
人工智能·rag
隔壁大炮5 分钟前
第1章,机器学习与深度学习
人工智能·深度学习·机器学习
云服务器租用费用6 分钟前
2026年零基础部署OpenClaw(前身为Clawdbot)+接入微信保姆级教程
服务器·人工智能·云原生·飞书·京东云