【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
User_芊芊君子8 分钟前
AI Ping 深度评测:大模型 API 选型的 “理性决策中枢”,终结经验主义选型时代
人工智能
smile_Iris9 分钟前
Day 32 类的定义和方法
开发语言·python
reasonsummer15 分钟前
【教学类-89-11】20251209新年篇07——灰色姓名对联(名字做对联,姓氏做横批,福字贴(通义万相AI福字空心字))
python·通义万相
明天再做行么15 分钟前
一些我用人工智能 翻译文章的心得
人工智能
晚霞的不甘6 小时前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
java1234_小锋6 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
飞Link6 小时前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
yLDeveloper6 小时前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
wearegogog1237 小时前
光谱分析波段选择的连续投影算法
算法
老蒋新思维7 小时前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人