【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
RPA 机器人就找八爪鱼8 小时前
RPA 赋能银行数字化转型:四大核心应用场景深度解析
数据库·人工智能·rpa
CQ_YM8 小时前
数据结构之队列
c语言·数据结构·算法·
newsxun8 小时前
行风伟业集团举办私董鉴藏会,聚焦当代艺术价值与前瞻收藏
人工智能
VekiSon9 小时前
数据结构与算法——树和哈希表
数据结构·算法
free-elcmacom9 小时前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
DARLING Zero two♡9 小时前
浏览器里跑 AI 语音转写?Whisper Web + cpolar让本地服务跑遍全网
前端·人工智能·whisper
袁庭新9 小时前
2025年11月总结
人工智能·aigc
Hi202402179 小时前
如何录制浏览器播放的音频?虚拟音频线与Python采集步骤
python·音视频
代码输入中...9 小时前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
科普瑞传感仪器9 小时前
告别“盲打磨”:六维力传感器如何通过选型实现真正的机器人恒力控制?
人工智能·科技·ai·机器人·无人机