【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
不知更鸟1 小时前
Django 项目设置流程
后端·python·django
自动化代码美学2 小时前
【Python3.13】官网学习之控制流
开发语言·windows·python·学习
王林(瑞昱Realtek,龙迅)3 小时前
视频拼接,分割,矩阵技术方案介绍
图像处理·嵌入式硬件·显示器·8k显示·画面拼接
无敌最俊朗@4 小时前
力扣hot100-206反转链表
算法·leetcode·链表
TsingtaoAI4 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
Kuo-Teng4 小时前
LeetCode 279: Perfect Squares
java·数据结构·算法·leetcode·职场和发展
王哈哈^_^4 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
百锦再4 小时前
第18章 高级特征
android·java·开发语言·后端·python·rust·django
檐下翻书1735 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
源码之家5 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask