【图像检测】深度学习与传统算法的区别(识别逻辑、学习能力、泛化能力)

识别逻辑


深度学习 使用了端到端的学习策略,直接学习从图像到检测结果的映射关系,自动提取特征,并且根据特征与特征之间的关系,计算出检测结果。

传统算法 则是人工提取特征,比如边缘特征,直线特征,形状特征,然后根据特征的关系,手工编写判断条件,识别类别结果

随着类别数量的增加,特征提取变得愈加复杂。每个特征的定义都需要处理大量的参数,而这些参数必须由视觉工程师进行细致的调整。

学习能力

深度学习 的学习能力强,使用了梯度下降方法,训练百万参数甚至上亿参数的模型。输入到模型的数据,如果没有自我矛盾,通常都会被完整学习,也就说训练集能够做到近似于 100% 检出。

传统算法 则需要手动设计算法,通过各种算子,例如二值化、形态学变换、边缘提取等算法,结合人工对缺陷的理解,编写算法。若是缺陷种类很多,数据量大,毕竟人工编写算子的效率有限,很难在训练集上做到 100% 检出。

例如,极片缺陷检测里有一个类叫做气泡。

如果是 传统算法 ,使用上面各种方法提取特征,然后判断这个物体是不是气泡,经过测试只有 85% 的准确率。而是用 深度学习 去识别,轻松可以做到 99.5% 以上的准确率。

泛化能力

深度学习 因为学习的数据量大,种类多样,因此有极强的泛化能力。我们使用的深度卷积神经网络,也就是 CNN,具备三大特性:

  • 平移不变性
  • 旋转不变性
  • 缩放不变性

也就是说,无论图像中的目标经历平移、旋转、缩放,还是在不同的光照条件和视角下,均能被成功识别。

传统算法 在打光条件发生变化的情况下,通常需要调节一些阈值参数,才能适应新的成像条件。

链接

AI工具:https://dlcv.com.cn

原文链接: https://bbs.dlcv.com.cn

相关推荐
神算大模型APi--天枢6468 分钟前
合规与高效兼得:国产全栈架构赋能行业大模型定制,从教育到工业的轻量化落地
大数据·前端·人工智能·架构·硬件架构
Swizard25 分钟前
拒绝“裸奔”上线:FastAPI + Pytest 自动化测试实战指南
python
XFF不秃头28 分钟前
力扣刷题笔记-旋转图像
c++·笔记·算法·leetcode
Coding茶水间28 分钟前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Channing Lewis40 分钟前
脑机智能会成为意识迁移的过渡形态吗
人工智能
王老师青少年编程41 分钟前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
有为少年1 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
GISer_Jing2 小时前
跨境营销前端AI应用业务领域
前端·人工智能·aigc
Ven%2 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の2 小时前
爬楼梯(动态规划)
算法·动态规划