C#构建一个简单的循环神经网络,模拟对话

循环神经网络(Recurrent Neural Network, RNN)是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有内部记忆能力,可以捕捉到序列中元素之间的依赖关系。这种特性使得RNN在自然语言处理、语音识别、时间序列预测等需要考虑上下文信息的任务中表现出色。

RNN的基本结构

RNN的基本结构包括输入层、隐藏层和输出层。在处理序列数据时,RNN会按照序列的时间顺序逐个处理每个元素。对于序列中的每一个时间步,RNN不仅会接收该时间步的输入,还会接收上一个时间步的隐藏状态作为输入。这样,通过将之前的信息传递给后续的处理步骤,RNN能够利用历史信息来影响当前的输出。

方法

  • InitializeWeightsAndBiases():使用随机值初始化权重矩阵和偏置向量。
  • Sigmoid():激活函数,用于隐藏层的非线性变换。
  • RandomMatrix():生成指定大小的随机矩阵,用于权重的初始化。
  • Softmax():通常用于多分类问题中的输出层,将输出转换为概率分布。
  • Forward():前向传播方法,根据输入数据计算每个时间步的输出。它会更新隐藏状态,并最终返回所有时间步的输出列表。
  • Backward():反向传播方法,用于根据预测输出与目标输出之间的差异调整模型参数。它计算梯度并更新权重和偏置。
  • UpdateWeights():根据计算出的梯度更新模型的权重和偏置。
  • Train():训练模型的方法,通过多次迭代(epoch)对输入数据进行前向传播和反向传播,以优化模型参数。
  • Predict():预测方法,根据输入数据返回每个时间步的预测结果索引,即输出概率最高的类别。

说明

这只是一个基础的 RNN 模型实现,实际应用中可能需要考虑更多的优化技术,比如使用长短期记忆网络(LSTM)、门控循环单元(GRU)等更复杂的架构来改善性能。

cs 复制代码
using System;
using System.Linq;
using System.Collections.Generic;

namespace Project.NeuralNetwork
{
    /// <summary>
    /// 构建神经网络
    /// </summary>
    public class RnnModel
    {
        /// <summary>
        /// 输入层大小
        /// </summary>
        private readonly int _inputSize;

        /// <summary>
        /// 隐藏层大小
        /// </summary>
        private readonly int _hiddenSize;

        /// <summary>
        /// 输出层大小
        /// </summary>
        private readonly int _outputSize;

        /// <summary>
        /// 输入到隐藏层的权重
        /// </summary>
        private double[,] _weightsInputHidden;

        /// <summary>
        /// 隐藏层到隐藏层的权重
        /// </summary>
        private double[,] _weightsHiddenHidden;

        /// <summary>
        /// 隐藏层到输出层的权重
        /// </summary>
        private double[,] _weightsHiddenOutput;

        /// <summary>
        /// 隐藏层偏置
        /// </summary>
        private double[] _biasHidden;

        /// <summary>
        /// 输出层偏置
        /// </summary>
        private double[] _biasOutput;

        /// <summary>
        /// 隐藏层状态
        /// </summary>
        private double[] _hiddenState;

        /// <summary>
        /// 初始化模型的构造函数
        /// </summary>
        /// <param name="inputSize"></param>
        /// <param name="hiddenSize"></param>
        /// <param name="outputSize"></param>
        public RnnModel(int inputSize, int hiddenSize, int outputSize)
        {
            _inputSize = inputSize;
            _hiddenSize = hiddenSize;
            _outputSize = outputSize;
            InitializeWeightsAndBiases();
        }

        /// <summary>
        /// 初始化权重和偏置
        /// </summary>
        private void InitializeWeightsAndBiases()
        {
            _weightsInputHidden = RandomMatrix(_inputSize, _hiddenSize);
            _weightsHiddenHidden = RandomMatrix(_hiddenSize, _hiddenSize);
            _weightsHiddenOutput = RandomMatrix(_hiddenSize, _outputSize);
            _biasHidden = new double[_hiddenSize];
            _biasOutput = new double[_outputSize];
        }

        /// <summary>
        /// 激活函数
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private double Sigmoid(double x)
        {
            return 1 / (1 + Math.Exp(-x));
        }

        /// <summary>
        /// 生成随机矩阵
        /// </summary>
        /// <param name="rows"></param>
        /// <param name="cols"></param>
        /// <returns></returns>
        private double[,] RandomMatrix(int rows, int cols)
        {
            var matrix = new double[rows, cols];
            var random = new Random();
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    matrix[i, j] = random.NextDouble() * 2 - 1; // [-1, 1]
                }
            }
            return matrix;
        }

        /// <summary>
        /// 前向传播
        /// </summary>
        /// <param name="inputs"></param>
        /// <returns></returns>
        public List<double[]> Forward(List<double[]> inputs)
        {
            _hiddenState = new double[_hiddenSize];
            var outputs = new List<double[]>();
            foreach (var input in inputs)
            {
                var hidden = new double[_hiddenSize];
                for (int h = 0; h < _hiddenSize; h++)
                {
                    hidden[h] = _biasHidden[h];
                    for (int i = 0; i < _inputSize; i++)
                    {
                        hidden[h] += _weightsInputHidden[i, h] * input[i];
                    }
                    for (int hh = 0; hh < _hiddenSize; hh++)
                    {
                        hidden[h] += _weightsHiddenHidden[hh, h] * _hiddenState[hh];
                    }
                    hidden[h] = Sigmoid(hidden[h]);
                }
                _hiddenState = hidden;
                var output = Output(hidden);
                outputs.Add(output);
            }
            return outputs;
        }

        /// <summary>
        /// 输出层
        /// </summary>
        /// <param name="h"></param>
        /// <returns></returns>
        private double[] Output(double[] h)
        {
            double[] y = new double[_outputSize];
            for (int i = 0; i < _outputSize; i++)
            {
                double sum = _biasOutput[i];
                for (int j = 0; j < _hiddenSize; j++)
                {
                    sum += h[j] * _weightsHiddenOutput[j, i];
                }
                y[i] = sum;
            }
            return Softmax(y);
        }

        /// <summary>
        /// 输出层的激活函数
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private double[] Softmax(double[] x)
        {
            double max = x.Max();
            double expSum = x.Select(xi => Math.Exp(xi - max)).Sum();
            return x.Select(xi => Math.Exp(xi - max) / expSum).ToArray();
        }

        /// <summary>
        /// 反向传播
        /// </summary>
        /// <param name="inputs"></param>
        /// <param name="targets"></param>
        /// <param name="outputs"></param>
        /// <param name="learningRate"></param>
        private void Backward(List<double[]> inputs, List<double[]> targets, List<double[]> outputs, double learningRate)
        {
            //输入到隐藏层的梯度
            double[,] dWeightsInputHidden = new double[_inputSize, _hiddenSize];
            //隐藏层到隐藏层的梯度
            double[,] dWeightsHiddenHidden = new double[_hiddenSize, _hiddenSize];
            //隐藏层到输出层的梯度
            double[,] dWeightsHiddenOutput = new double[_hiddenSize, _outputSize];
            //隐藏层的偏置
            double[] dBiasHidden = new double[_hiddenSize];
            //输出层的偏置
            double[] dBiasOutput = new double[_outputSize];

            for (int t = inputs.Count - 1; t >= 0; t--)
            {
                double[] targetVector = new double[_outputSize];
                Array.Copy(targets[t], targetVector, _outputSize);
                // 计算输出层的误差
                for (int o = 0; o < _outputSize; o++)
                {
                    dBiasOutput[o] = outputs[t][o] - targetVector[o];
                }
                // 计算隐藏层到输出层的梯度
                for (int o = 0; o < _outputSize; o++)
                {
                    for (int h = 0; h < _hiddenSize; h++)
                    {
                        dWeightsHiddenOutput[h, o] += dBiasOutput[o] * _hiddenState[h];
                    }
                }
                // 计算隐藏层的偏置
                double[] dh = new double[_hiddenSize];
                for (int h = 0; h < _hiddenSize; h++)
                {
                    double error = 0;
                    for (int o = 0; o < _outputSize; o++)
                    {
                        error += dBiasOutput[o] * _weightsHiddenOutput[h, o];
                    }
                    dh[h] = error * (_hiddenState[h] * (1 - _hiddenState[h]));
                }
                for (int h = 0; h < _hiddenSize; h++)
                {
                    dBiasHidden[h] += dh[h];
                }
                //计算输入到隐藏层的梯度
                for (int h = 0; h < _hiddenSize; h++)
                {
                    for (int i = 0; i < _inputSize; i++)
                    {
                        dWeightsInputHidden[i, h] += dh[h] * inputs[t][i];
                    }
                }
                // 计算输入到隐藏层的梯度
                if (t > 0)
                {
                    for (int h = 0; h < _hiddenSize; h++)
                    {
                        for (int hh = 0; hh < _hiddenSize; hh++)
                        {
                            dWeightsHiddenHidden[hh, h] += dh[h] * _hiddenState[hh];
                        }
                    }
                }
            }
            // 更新权重和偏置
            UpdateWeights(dWeightsInputHidden, dWeightsHiddenHidden, dWeightsHiddenOutput, dBiasHidden, dBiasOutput, learningRate);
        }

        /// <summary>
        /// 更新权重
        /// </summary>
        /// <param name="dWxh"></param>
        /// <param name="dWhh"></param>
        /// <param name="dWhy"></param>
        /// <param name="dbh"></param>
        /// <param name="dby"></param>
        /// <param name="learningRate"></param>
        private void UpdateWeights(double[,] dWeightsInputHidden, double[,] dWeightsHiddenHidden, double[,] dWeightsHiddenOutput, double[] dBiasHidden, double[] dBiasOutput, double learningRate)
        {
            // 更新输入到隐藏层的权重
            for (int i = 0; i < _inputSize; i++)
            {
                for (int h = 0; h < _hiddenSize; h++)
                {
                    _weightsInputHidden[i, h] -= learningRate * dWeightsInputHidden[i, h];
                }
            }
            //更新隐藏层到隐藏层的权重
            for (int h = 0; h < _hiddenSize; h++)
            {
                for (int hh = 0; hh < _hiddenSize; hh++)
                {
                    _weightsHiddenHidden[h, hh] -= learningRate * dWeightsHiddenHidden[h, hh];
                }
            }
            //更新隐藏层到输出层的权重
            for (int h = 0; h < _hiddenSize; h++)
            {
                for (int o = 0; o < _outputSize; o++)
                {
                    _weightsHiddenOutput[h, o] -= learningRate * dWeightsHiddenOutput[h, o];
                }
            }
            //更新隐藏层的偏置
            for (int h = 0; h < _hiddenSize; h++)
            {
                _biasHidden[h] -= learningRate * dBiasHidden[h];
            }
            //更新输出层的偏置
            for (int o = 0; o < _outputSize; o++)
            {
                _biasOutput[o] -= learningRate * dBiasOutput[o];
            }
        }

        /// <summary>
        /// 训练
        /// </summary>
        /// <param name="inputs"></param>
        /// <param name="targets"></param>
        /// <param name="epochs"></param>
        /// <param name="learningRate"></param>
        public void Train(List<List<double[]>> inputs, List<List<double[]>> targets, double learningRate, int epochs)
        {
            for (int epoch = 0; epoch < epochs; epoch++)
            {
                for (int i = 0; i < inputs.Count; i++)
                {
                    List<double[]> input = inputs[i];
                    List<double[]> target = targets[i];
                    List<double[]> outputs = Forward(input);
                    Backward(input, target, outputs, learningRate);
                }
            }
        }

        /// <summary>
        /// 预测
        /// </summary>
        /// <param name="inputs"></param>
        /// <returns></returns>
        public int[] Predict(List<double[]> inputs)
        {
            var output = Forward(inputs);
            var predictedIndices = output.Select(o => Array.IndexOf(o, o.Max())).ToArray();
            return predictedIndices;
        }
    }
}
  • 准备训练数据
  • 训练网络
  • 测试并输出结果
cs 复制代码
public static void Rnn_Predict()
{
    // 定义数据集
    var data = new List<Tuple<string[], string[]>>
    {
        Tuple.Create(new string[] { "早安" }, new string[] { "早上好" }),
        Tuple.Create(new string[] { "午安" }, new string[] { "中午好" }),
        Tuple.Create(new string[] { "晚安" }, new string[] { "晚上好" }),
        Tuple.Create(new string[] { "你好吗?" }, new string[] { "我很好,谢谢。" })
    };

    // 创建词汇表
    var allWords = data.SelectMany(t => t.Item1.Concat(t.Item2)).Distinct().ToList();
    var wordToIndex = allWords.ToDictionary(word => word, word => allWords.IndexOf(word));

    // 将字符串转换为one-hot编码
    List<List<double[]>> inputsData = new List<List<double[]>>();
    List<List<double[]>> targetsData = new List<List<double[]>>();

    foreach (var item in data)
    {
        var inputSequence = item.Item1.Select(word => OneHotEncode(word, wordToIndex)).ToList();
        var targetSequence = item.Item2.Select(word => OneHotEncode(word, wordToIndex)).ToList();

        inputsData.Add(inputSequence);
        targetsData.Add(targetSequence);
    }

    double[] OneHotEncode(string word, Dictionary<string, int> wordToIndex)
    {
        var encoding = new double[wordToIndex.Count];
        encoding[wordToIndex[word]] = 1;
        return encoding;
    }

    //开始训练
    int inputSize = allWords.Count;
    int hiddenSize = allWords.Count;
    int outputSize = allWords.Count;
    RnnModel model = new RnnModel(inputSize, hiddenSize, outputSize);
    int epochs = 10000;
    double learningRate = 0.1;
    model.Train(inputsData, targetsData, learningRate, epochs);

    //预测
    while (true)
    {
        Console.Write("你: ");
        string userInput = Console.ReadLine();
        if (userInput.ToLower() == "exit")
        {
            break;
        }
        if (!allWords.Contains(userInput))
        {
            Console.WriteLine("对不起,我不认识这些词。");
            continue;
        }
        var testInput = new List<double[]> { OneHotEncode(userInput, wordToIndex) };
        var prediction = model.Predict(testInput);
        var predictedWords = prediction.Select(index => allWords[index]).ToArray();
        Console.WriteLine($"机器人: {string.Join(", ", predictedWords)}");
    }
}
相关推荐
秀儿还能再秀16 分钟前
神经网络(系统性学习四):深度学习——卷积神经网络(CNN)
人工智能·深度学习·机器学习·cnn·学习笔记
小乖兽技术1 小时前
C#13新特性介绍:LINQ 的优化设计
开发语言·c#·linq
hccee2 小时前
DevExpress控件 基本使用
c#
归-途3 小时前
C#构建一个简单的前馈神经网络
神经网络·机器学习·c#
慕卿扬4 小时前
基于python的机器学习(四)—— 聚类(一)
笔记·python·学习·机器学习·聚类
shepherd枸杞泡茶4 小时前
C# 数据结构之【图】C#图
数据结构·c#·.net
YRr YRr4 小时前
深度解析神经网络中的最大池化层:工作原理、参数配置与应用示例
人工智能·深度学习·神经网络
静能生慧4 小时前
大模型-微调与对齐-非强化学习的对齐方法
人工智能·深度学习·机器学习·大模型
AI浩5 小时前
ShuffleNet:一种为移动设备设计的极致高效的卷积神经网络
人工智能·神经网络·cnn