文章目录
- [1. 重要类](#1. 重要类)
- [2. add_modules](#2. add_modules)
- [3. Apply(fn)](#3. Apply(fn))
- [4. register_buffer](#4. register_buffer)
- [5. nn.Parameters®ister_parameters](#5. nn.Parameters®ister_parameters)
- [6. 后续测试](#6. 后续测试)
1. 重要类
- nn.module --> 所有神经网络的父类,自定义神经网络需要继承此类,并且自定义__init__,forward函数即可:
python
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName :MyModelNet.py
# @Time :2024/11/20 13:38
# @Author :Jason Zhang
import torch
from torch import nn
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork,self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
if __name__ == "__main__":
run_code = 0
x_row = 28
x_column = 28
x_total = x_row * x_column
x = torch.arange(x_total, dtype=torch.float).reshape((1, x_row, x_column))
my_net = NeuralNetwork()
y = my_net(x)
print(f"y.shape={y.shape}")
print(my_net)
- 结果:
python
y.shape=torch.Size([1, 10])
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
2. add_modules
通过add_modules在旧的网络里面添加新的网络
- 重点: 用nn.ModuleList自带的insert,新的网络继承自老网络中,直接用按位置插入
- python
python
import torch
from torch import nn
from pytorch_model_summary import summary
torch.manual_seed(2323)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.flatten = nn.Flatten()
self.block = nn.ModuleList([
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 10)
])
def forward(self, x):
x = self.flatten(x)
for layer in self.block:
x = layer(x)
return x
class MyNewNet(MyModel):
def __init__(self):
super(MyNewNet, self).__init__()
self.block.insert(2, nn.Linear(512, 256)) # 插入新层
self.block.insert(3, nn.ReLU()) # 插入新的激活函数
self.block.insert(4, nn.Linear(256, 512)) # 插入另一层
self.block.insert(5, nn.ReLU()) # 插入激活函数
if __name__ == "__main__":
# 测试原始模型
my_model = MyModel()
print("Original Model:")
print(summary(my_model, torch.ones((1, 28, 28))))
# 测试新模型
my_new_model = MyNewNet()
print("\nNew Model:")
print(summary(my_new_model, torch.ones((1, 28, 28))))
- 结果:
python
Original Model:
-----------------------------------------------------------------------
Layer (type) Output Shape Param # Tr. Param #
=======================================================================
Flatten-1 [1, 784] 0 0
Linear-2 [1, 512] 401,920 401,920
ReLU-3 [1, 512] 0 0
Linear-4 [1, 10] 5,130 5,130
=======================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
-----------------------------------------------------------------------
New Model:
-----------------------------------------------------------------------
Layer (type) Output Shape Param # Tr. Param #
=======================================================================
Flatten-1 [1, 784] 0 0
Linear-2 [1, 512] 401,920 401,920
ReLU-3 [1, 512] 0 0
Linear-4 [1, 256] 131,328 131,328
ReLU-5 [1, 256] 0 0
Linear-6 [1, 512] 131,584 131,584
ReLU-7 [1, 512] 0 0
Linear-8 [1, 10] 5,130 5,130
=======================================================================
Total params: 669,962
Trainable params: 669,962
Non-trainable params: 0
-----------------------------------------------------------------------
3. Apply(fn)
模型权重weight,bias 的初始化
- python
python
import torch.nn as nn
import torch
class MyAwesomeModel(nn.Module):
def __init__(self):
super(MyAwesomeModel, self).__init__()
self.fc1 = nn.Linear(3, 4)
self.fc2 = nn.Linear(4, 5)
self.fc3 = nn.Linear(5, 6)
# 定义初始化函数
@torch.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
# 创建神经网络实例
model = MyAwesomeModel()
# 应用初始化权值函数到神经网络上
model.apply(init_weights)
- 结果:
python
Linear(in_features=3, out_features=4, bias=True)
Parameter containing:
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], requires_grad=True)
Linear(in_features=4, out_features=5, bias=True)
Parameter containing:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], requires_grad=True)
Linear(in_features=5, out_features=6, bias=True)
Parameter containing:
tensor([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]], requires_grad=True)
MyAwesomeModel(
(fc1): Linear(in_features=3, out_features=4, bias=True)
(fc2): Linear(in_features=4, out_features=5, bias=True)
(fc3): Linear(in_features=5, out_features=6, bias=True)
)
Process finished with exit code 0
4. register_buffer
将模型中添加常数项。比如加1
- python:
python
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName :RegisterBuffer.py
# @Time :2024/11/23 19:21
# @Author :Jason Zhang
import torch
from torch import nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.register_buffer("my_buffer_a", torch.ones(2, 3))
def forward(self, x):
x = x + self.my_buffer_a
return x
if __name__ == "__main__":
run_code = 0
my_test = MyNet()
in_x = torch.arange(6).reshape((2, 3))
y = my_test(in_x)
print(f"x=\n{in_x}")
print(f"y=\n{y}")
- 结果:
python
x=
tensor([[0, 1, 2],
[3, 4, 5]])
y=
tensor([[1., 2., 3.],
[4., 5., 6.]])
5. nn.Parameters®ister_parameters
- python
python
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @FileName :ParameterTest.py
# @Time :2024/11/23 19:37
# @Author :Jason Zhang
import torch
from torch import nn
class MyModule(nn.Module):
def __init__(self, in_size, out_size):
self.in_size = in_size
self.out_size = out_size
super(MyModule, self).__init__()
self.test = torch.rand(self.in_size, self.out_size)
self.linear = nn.Linear(self.in_size, self.out_size)
def forward(self, x):
x = self.linear(x)
return x
class MyModuleRegister(nn.Module):
def __init__(self, in_size, out_size):
self.in_size = in_size
self.out_size = out_size
super(MyModuleRegister, self).__init__()
self.test = torch.rand(self.in_size, self.out_size)
self.linear = nn.Linear(self.in_size, self.out_size)
def forward(self, x):
x = self.linear(x)
return x
class MyModulePara(nn.Module):
def __init__(self, in_size, out_size):
self.in_size = in_size
self.out_size = out_size
super(MyModulePara, self).__init__()
self.test = nn.Parameter(torch.rand(self.in_size, self.out_size))
self.linear = nn.Linear(self.in_size, self.out_size)
def forward(self, x):
x = self.linear(x)
return x
if __name__ == "__main__":
run_code = 0
test_in = 4
test_out = 6
my_test = MyModule(test_in, test_out)
my_test_para = MyModulePara(test_in, test_out)
test_list = list(my_test.named_parameters())
test_list_para = list(my_test_para.named_parameters())
my_test_register = MyModuleRegister(test_in, test_out)
para_register = nn.Parameter(torch.rand(test_in, test_out))
my_test_register.register_parameter('para_add_register', para_register)
test_list_para_register = list(my_test_register.named_parameters())
print(f"*" * 50)
print(f"test_list=\n{test_list}")
print(f"*" * 50)
print(f"*" * 50)
print(f"test_list_para=\n{test_list_para}")
print(f"*" * 50)
print(f"*" * 50)
print(f"test_list_para_register=\n{test_list_para_register}")
print(f"*" * 50)
- 结果:
python
**************************************************
test_list=
[('linear.weight', Parameter containing:
tensor([[ 0.3805, -0.3368, 0.2348, 0.4525],
[-0.4557, -0.3344, 0.1368, -0.3471],
[-0.3961, 0.3302, 0.1904, -0.0111],
[ 0.4542, -0.3325, -0.3782, 0.0376],
[ 0.2083, -0.3113, -0.3447, -0.1503],
[ 0.0343, 0.0410, -0.4216, -0.4793]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([-0.3465, -0.4510, 0.4919, 0.1967, -0.1366, -0.2496],
requires_grad=True))]
**************************************************
**************************************************
test_list_para=
[('test', Parameter containing:
tensor([[0.1353, 0.9934, 0.0462, 0.2103, 0.3410, 0.0814],
[0.7509, 0.2573, 0.8030, 0.0952, 0.1381, 0.5360],
[0.1972, 0.1241, 0.5597, 0.2691, 0.3226, 0.0660],
[0.3333, 0.8031, 0.9226, 0.4290, 0.3660, 0.6159]], requires_grad=True)), ('linear.weight', Parameter containing:
tensor([[-0.0633, -0.4030, -0.4962, 0.1928],
[-0.1707, 0.2259, 0.0373, -0.0317],
[ 0.4523, 0.2439, -0.1376, -0.3323],
[ 0.3215, 0.1283, 0.0729, 0.3912],
[ 0.0262, -0.1087, 0.4721, -0.1661],
[-0.1055, -0.2199, -0.4974, -0.3444]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([ 0.3702, -0.0142, -0.2098, -0.0910, -0.2323, -0.0546],
requires_grad=True))]
**************************************************
**************************************************
test_list_para_register=
[('para_add_register', Parameter containing:
tensor([[0.2428, 0.1388, 0.6612, 0.4215, 0.0215, 0.2618],
[0.4234, 0.0160, 0.8947, 0.4784, 0.4403, 0.4800],
[0.8845, 0.1469, 0.6894, 0.7050, 0.5911, 0.7702],
[0.7694, 0.0491, 0.3583, 0.4451, 0.2282, 0.4293]], requires_grad=True)), ('linear.weight', Parameter containing:
tensor([[ 0.1358, -0.4704, -0.4181, -0.4504],
[ 0.0903, 0.3235, -0.3164, -0.4163],
[ 0.1342, 0.3108, 0.0612, -0.2910],
[ 0.3527, 0.3397, -0.0414, -0.0408],
[-0.4877, 0.1925, -0.2912, -0.2239],
[-0.0081, -0.1730, 0.0921, -0.4210]], requires_grad=True)), ('linear.bias', Parameter containing:
tensor([-0.2194, 0.2233, -0.4950, -0.3260, -0.0206, -0.0197],
requires_grad=True))]
**************************************************
6. 后续测试
- register_module
- get_submodule
- get_parameter