目录
- 1、前言
- 2、相关方案推荐
-
- 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
- [我这里已有的 GT 高速接口解决方案](#我这里已有的 GT 高速接口解决方案)
- 本博已有的FPGA驱动USB通信方案
- 3、工程详细设计方案
-
- 工程设计原理框图
- 输入Sensor之-->OV5640摄像头
- 输入Sensor之-->芯片解码的HDMI
- 视频数据组包
- 基于GTP高速接口的视频传输架构
-
- [GTP IP 简介](#GTP IP 简介)
- [GTP 基本结构](#GTP 基本结构)
- [GTP 发送和接收处理流程](#GTP 发送和接收处理流程)
- [GTP 的参考时钟](#GTP 的参考时钟)
- [GTP 发送接口](#GTP 发送接口)
- [GTP 接收接口](#GTP 接收接口)
- [GTP IP核调用和使用](#GTP IP核调用和使用)
- 数据对齐
- 视频数据解包
- FDMA图像缓存
- FT601功能和硬件电路
- FT601读时序解读
- FT601写时序解读
- FT601用户读写逻辑
- FT601驱动安装
- USB3.0视频接收显示QT上位机
- 工程源码架构
- 4、vivado工程源码1详解-->Aritx7--35T,OV6540输入版本
- 5、vivado工程源码2详解-->Aritx7--100T,OV6540输入版本
- 6、vivado工程源码3详解-->Aritx7--100T,HDMI输入版本
- 7、工程移植说明
- 8、上板调试验证
- 9、工程代码的获取
FPGA实现GTP光口视频转USB3.0传输,基于FT601+Aurora 8b/10b编解码架构,提供3套工程源码和技术支持
1、前言
FPGA实现USB3.0现状;
目前FPGA实现USB3.0的实现方案很多,但就简单好用的角度而言,FT601应该是最佳方案,因为它电路设计简单,操作时序简单,软件驱动简单,官方甚至提供了包括FPGA驱动在内的丰富的驱动源码和测试软件;本设计旨在普及传播FT601芯片在FPGA领域实现USB3.0通信应用,包括FT601芯片解读、FT601芯片读写时序分析、FT601芯片硬件电路参考设计、FT601与PC端的QT上位机通信,包括FT601测速试验、FT601视频采集传输试验、FT601视频采集+图像处理后传输试验等等;
FPGA实现SFP光口视频编解码现状;
目前基于Xilinx系列FPGA的SFP光口视频编解码主要有以下几种,Artix7系列的GTP、Kintex7系列的GTX、更高端FPGA器件的GTH、GTY、GTV、GTM等,线速率越来越高,应用场景也越来越高端;编码方式也是多种多样,有8b/10b编解码、64b/66b编解码、HDMI编解码、SDI编解码等等;本设计采用7系列的GTP作为高速接口、8b/10b编解码的方式实现SFP光口视频编解码;
工程概述
本设计使用Xilinx Artix7系列FPGA为平台,实现GTP 8b/10b编解码视频传输;视频输入源有多种,一种是板载的HDMI输入接口,另一种是传统摄像头,包括OV7725、OV5640和AR0135;如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认不使用动态彩条;FPGA首先对摄像头进行i2c初始化配置,然后采集摄像头视频;然后采集输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTP IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTP IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;然后由FT601读写逻辑控制视频从DDR3中读出;FT601使用同步FIFO-245模式,工作模式通过GPIO0/GPIO1引脚配置;根据FT601读写时序设计了读写状态机;在PC端QT上位机控制下,FT601读写逻辑产生从DDR3中读取视频的控制信号,并将读出的视频通过FT601写数据总线发送到板载的FT601芯片;FPGA开发板通过USB3.0数据线连接至PC端主机;PC端的QT上位机调用FT601驱动的API实现图像读取并显示视频;由此形成外接Sensor+FPGA+高速接口+光编码+USB3.0+QT上位机的珠联璧合;针对市场主流需求,本博客设计并提供3套工程源码,具体如下:
现对上述3套工程源码做如下解释,方便读者理解:
工程源码1
开发板FPGA型号为Xilinx--Artix7--xc7a35tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTP IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTP IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;;然后由FT601读写逻辑控制视频从DDR3中读出;FT601使用同步FIFO-245模式,工作模式通过GPIO0/GPIO1引脚配置;根据FT601读写时序设计了读写状态机;在PC端QT上位机控制下,FT601读写逻辑产生从DDR3中读取视频的控制信号,并将读出的视频通过FT601写数据总线发送到板载的FT601芯片;FPGA开发板通过USB3.0数据线连接至PC端主机,输出分辨率为1280x720@60Hz;PC端的QT上位机调用FT601驱动的API实现图像读取并显示视频;由此形成Sensor+FPGA+高速接口+光编码+USB3.0+QT上位机的高端架构;该工程适用于SFP光口的视频采集卡(光端机)应用;
工程源码2
开发板FPGA型号为Xilinx--Artix7--xc7a1000tfgg484-2;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后采集输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTP IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTP IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;;然后由FT601读写逻辑控制视频从DDR3中读出;FT601使用同步FIFO-245模式,工作模式通过GPIO0/GPIO1引脚配置;根据FT601读写时序设计了读写状态机;在PC端QT上位机控制下,FT601读写逻辑产生从DDR3中读取视频的控制信号,并将读出的视频通过FT601写数据总线发送到板载的FT601芯片;FPGA开发板通过USB3.0数据线连接至PC端主机,输出分辨率为1280x720@60Hz;PC端的QT上位机调用FT601驱动的API实现图像读取并显示视频;由此形成Sensor+FPGA+高速接口+光编码+USB3.0+QT上位机的高端架构;该工程适用于SFP光口的视频采集卡(光端机)应用;
工程源码3
开发板FPGA型号为Xilinx--Artix7--xc7a1000tfgg484-2;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的ADV7611芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对ADV7611进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后采集输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTP IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行差分信号,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTP IP核实现视频8b/10b解码和数据解串,将差分高速串行信号解为并行数据;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像3帧缓存,缓存介质为板载DDR3;;然后由FT601读写逻辑控制视频从DDR3中读出;FT601使用同步FIFO-245模式,工作模式通过GPIO0/GPIO1引脚配置;根据FT601读写时序设计了读写状态机;在PC端QT上位机控制下,FT601读写逻辑产生从DDR3中读取视频的控制信号,并将读出的视频通过FT601写数据总线发送到板载的FT601芯片;FPGA开发板通过USB3.0数据线连接至PC端主机,输出分辨率为1920x1080@60Hz;PC端的QT上位机调用FT601驱动的API实现图像读取并显示视频;由此形成Sensor+FPGA+高速接口+光编码+USB3.0+QT上位机的高端架构;该工程适用于SFP光口的视频采集卡(光端机)应用;
本博客详细描述了FPGA基于Aurora 8b/10b编解码架构实现GTP光口视频转USB3.0传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往
我这里已有的 GT 高速接口解决方案
我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往
本博已有的FPGA驱动USB通信方案
我的博客主页开设有FPGA驱动USB通信专栏,里面全是FPGA驱动USB通信的工程源码及博客介绍;既有基于USB2.0也有USB3.0方案;包括USB2.0/3.0测速试验、USB2.0/3.0视频采集传输试验、USB2.0/3.0视频采集+图像处理后传输试验等等;所有工方案均包括FPGA工程和QT上位机源码;专栏地址链接如下:
点击直接前往
3、工程详细设计方案
工程设计原理框图
工程设计原理框图如下:
输入Sensor之-->OV5640摄像头
输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
输入Sensor之-->芯片解码的HDMI
输入Sensor是本工程的输入设备,其二为板载的HDMI输入接口;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,保活ADV7611、IT6802\Silcom9011等芯片,以ADV7611为例,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对ADV7611芯片的配置,分辨率配置为1920x1080@60Hz;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
整个模块代码架构如下:
视频数据组包
由于视频需要在GTP 中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTP发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTP组包时根据固定的指令进行数据发送,GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
注意!!!指令可以任意更改,但最低字节必须为bc;
基于GTP高速接口的视频传输架构
本设计使用GTP高速接口传输视频,使用8b/10b编解码协议,搭建基于GTP高速接口的视频传输架构,包括视频数据组包模块、GTP IP核配置调用、接收数据对齐模块、视频数据解包模块等部分,总体代码架构如下:
基于GTP高速接口的视频传输架构顶层接口核参数配置如下:
本设计共例化了2路GTP,所以2路GTP的收发回环方式也做了灵活的参数化配置,如果你只需要1路GT,则可删除另一路,如果你想例化更多路GT,则可根据上述设计方法扩展,十分方便;
GTP IP 简介
关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里;我用到的开发板FPGA型号为Xilinx--Artix7系列FPGA;带有4路GTP资源,每通道的收发速度为500 Mb/s到6.6 Gb/s之间。GTP收发器支持不同的串行传输接口或协议,比如8b/10b编解码、PCIE /2.0接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;
GTP 基本结构
Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix7系列FPGA 芯片中的示意图;《ug482_7Series_GTP_Transceivers》第13页;GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;
GTPE2_CHANNEL的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;
GTP 发送和接收处理流程
首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。
GTP 的参考时钟
GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;
GTP 发送接口
《ug482_7Series_GTP_Transceivers》的第75到123页
详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;用户只需要关心发送接口的时钟和数据即可,以例化2路GTP为例,经本博主优化,用户只需要关心如下GTP发送接口即可快速使用GTP;
GTP 接收接口
《ug482_7Series_GTP_Transceivers》的第125到213页
详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;用户只需要关心接收接口的时钟和数据即可,以例化2路GTP为例,经本博主优化,用户只需要关心如下GTP接收接口即可快速使用GTP;
GTP IP核调用和使用
GTP IP核配置调用在工程种位置如下:
GTP IP核调用和使用很简单,通过vivado的UI界面即可完成,如下:
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中配置为5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
我的板子原理图如下:
选择外部数据位宽32bit的8b/10b编解码,如下:
下面这里讲的是K码检测:
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;
数据对齐
由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4'b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4'b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4'b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4'b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4'b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;数据对齐模块顶层接口如下:
视频数据解包
数据解包是数据组包的逆过程,代码位置如下:
GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;由于数据解包是数据组包的逆过程,所以这里不再过多赘述,视频数据解包模块顶层接口如下:
FDMA图像缓存
FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;图像缓存模块代码架构如下:
基于FDMA的图像缓存架构在Block Design设计中如下:
FT601功能和硬件电路
FT600/601Q 的技术参数如下:
FT600&601Q 芯片是 FT 最新推出的 USB3.0 to FIFO interface IC,实现 USB3.0 与 16/32bit 并行 IO 接口之间的数据传输;整个 USB 通信协议全部由芯片驱动自行完成,开发者无须考虑 USB 底层固件的编程。
-->兼容支持 USB3.0(5Gbps),向下兼容 USB2.0(480Mbps and 12Mbps)传输;
-->高达 8 个可配置 Endpoint. >>支持 2 种 FIFO 传输协议,最大传输可达 400MB/s;
-->芯片内部有 16K 字节的缓冲区,可以进行数据的大吞吐量操作;
-->支持远程唤醒功能;
-->芯片支持多种 IO 电压:1.8V,2.5V.3.3V;
-->通过 16bit D[O:15]或 32bit D[0:31]并行数据线和读写状态/控制线 RXF、TXE、RD、WR,加上时钟 CLK,使能 OE 信号线就可实现与 CPU/FPGA 的数据交换;
-->该芯片内部集成 1.0V LDO,可提供给芯片核心部分使用;
-->工业级芯片,工作温度范围-40 to 85℃;
FT601芯片框架如下:
FT601外围电路设计参考如下:
FT601支持的多种传输模式,其中 245 Synchronous FIFO 模式和 Multi-Channel FIFO 模式是最常用的模式,本工程配置为 245 Synchronous FIFO 模式;传输模式通过GPIO引脚高低电平配置,配置真值表如下:
FT601读时序解读
FT601的245 Synchronous FIFO 模式读时序如下:
RXF_N为读数据状态信号,RXF_N为低电平期间FPGA可以读取FT601数据;
检测到RXF_N低电平后,拉低OE_N和RD_N,然后开始读数据;
检测到RXF_N高电平后,拉高OE_N和RD_N,然后退出读数据状态;
FT601写时序解读
FT601的245 Synchronous FIFO 模式写时序如下:
TXF_N为读数据状态信号,RXF_N为低电平期间FPGA向FT601写入数据;
检测到TXF_N低电平后,拉低WR_N,然后开始向FT601写入数据;
检测到TXF_N高电平后,拉高WR_N,然后退出写数据状态;
FT601用户读写逻辑
基于以上对FT601的解读,就可以用verilog实现对FT601的读写操作了,工程中FT601用户读写逻辑代码如下:
FT601用户读写逻辑代码顶层接口如下:
FT601驱动安装
注意:驱动只需要安装一次即可;
首先下载bit到FPGA开发板,如下:
然后打开PC端-->我的电脑-->管理-->设备管理器,可以看到FT601设备已经识别,如下:
如果你已经下载了FT601驱动文件,但没有安装,则有的电脑会自动寻找驱动并自定安装,所以等待大约1分钟后,电脑自动帮我们装好了FT601驱动,如下:
如果你的电脑不能自动寻找驱动并安装,请手动安装驱动,如下:
USB3.0视频接收显示QT上位机
仅提供Win10版本的QT上位机,位置如下:
以Win10版本为例,源码位置如下:
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
QT上位机运行效果如下:
工程源码架构
提供3套工程源码,以工程源码1为例,工程Block Design设计如下:
提供3套工程源码,以工程源码1为例,综合后的工程源码架构如下:
工程编译后资源消耗低、功耗低、时序收敛,符合工程项目应用要求,如下:
上图只是举例,资源消耗并非本工程的实际消耗,实际消耗请看下文的《工程代码详解》;
4、vivado工程源码1详解-->Aritx7--35T,OV6540输入版本
开发板FPGA型号:Xilinx--Artix7--xc7a35tfgg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:USB3.0,分辨率1280x720@60Hz;
USB3.0物理层方案:FT601芯片方案;
回环光口类型:SFP光口;
高速接口类型:GTP,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
图像缓存方案:FDMA图像缓存+DDR3颗粒+3帧缓存;
实现功能:FPGA实现GTP光口视频转USB3.0传输;
工程作用:此工程目的是让读者掌握FPGA实现GTP光口视频转USB3.0传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
5、vivado工程源码2详解-->Aritx7--100T,OV6540输入版本
开发板FPGA型号:Xilinx--Artix7--xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:OV5640摄像头或动态彩条,分辨率1280x720@30Hz;
输出:USB3.0,分辨率1280x720@60Hz;
USB3.0物理层方案:FT601芯片方案;
回环光口类型:SFP光口;
高速接口类型:GTP,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
图像缓存方案:FDMA图像缓存+DDR3颗粒+3帧缓存;
实现功能:FPGA实现GTP光口视频转USB3.0传输;
工程作用:此工程目的是让读者掌握FPGA实现GTP光口视频转USB3.0传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
6、vivado工程源码3详解-->Aritx7--100T,HDMI输入版本
开发板FPGA型号:Xilinx--Artix7--xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:HDMI或者FPGA内部动态彩条,ADV7611芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:USB3.0,分辨率1920x1080@60Hz;
USB3.0物理层方案:FT601芯片方案;
回环光口类型:SFP光口;
高速接口类型:GTP,线速率5Gbps;
高速接口编解码协议:8b/10b编解码;
图像缓存方案:FDMA图像缓存+DDR3颗粒+3帧缓存;
实现功能:FPGA实现GTP光口视频转USB3.0传输;
工程作用:此工程目的是让读者掌握FPGA实现GTP光口视频转USB3.0传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
7、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件-->另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
8、上板调试验证
准备工作
需要准备的器材如下:
OV5640摄像头或者笔记本电脑,没有则请使用FPGA内部生成的彩条;
FT601转接板(FPGA开发板板载FT601除外);
USB3.0数据线;
FPGA开发板,没有开发板可以找本博提供;
SFP光模块和光纤;
我的开发板了连接如下:
GTP光口视频转USB3.0传输效果演示
GTP光口视频转USB3.0传输演示如下:
OV5640-GT-USB3.0
9、工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:文章末尾名片。
网盘资料如下:
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务: